Cui, Shiyong und Datcu, Mihai (2015) Comparison of Kullback-Leibler Divergence Approximation Methods Between Gaussian Mixture Models for Satellite Image Retrieval. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2015, Seiten 3719-3722. IEEE Xplore. IGARSS 2015, 2015-07-26 - 2015-07-31, Milan, Italy. doi: 10.1109/IGARSS.2015.7326631.
PDF
215kB |
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7326631
Kurzfassung
In many applications, such as image retrieval and change detection, we need to assess the similarity of two statistical models. As a distance measure between two probability density functions, Kullback-Leibler divergence is widely used for comparing two statistical models. Unfortunately, for some models such as Gaussian Mixture Model (GMM), Kullback-Leibler divergence has no analytically tractable formula. We have to resort to approximation methods. In this paper, we compare seven methods, namely Monte Carlo method, matched bond approximation, product of Gaussian, variational method, unscented transformation, Gaussian approximation, and min-Gaussian approximation, for approximating the Kullback-Leibler divergence between two Gaussian mixture models for satellite image retrieval. Two image retrieval experiments based on two publicly available datasets have been performed. The comparison is carried out in terms of both retrieval performance and computational time.
elib-URL des Eintrags: | https://elib.dlr.de/96179/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Comparison of Kullback-Leibler Divergence Approximation Methods Between Gaussian Mixture Models for Satellite Image Retrieval | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2015 | ||||||||||||
Erschienen in: | Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2015 | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IGARSS.2015.7326631 | ||||||||||||
Seitenbereich: | Seiten 3719-3722 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | IEEE Xplore | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Gaussian Mixture Model (GMM), Kullback-Leibler Divergence, Image Retrieval. | ||||||||||||
Veranstaltungstitel: | IGARSS 2015 | ||||||||||||
Veranstaltungsort: | Milan, Italy | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 26 Juli 2015 | ||||||||||||
Veranstaltungsende: | 31 Juli 2015 | ||||||||||||
Veranstalter : | IEEE Org. | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | Cui, Shiyong | ||||||||||||
Hinterlegt am: | 06 Mai 2015 13:03 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags