elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Human Activity Pattern Recognition from Accelerometry Data

Jos, Dennis (2013) Human Activity Pattern Recognition from Accelerometry Data. Masterarbeit, RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG.

[img] PDF
2MB

Kurzfassung

Ambulant studies are dependent on the behavior and compliance of subjects in their home environment. Especially during interventions on the musculoskeletal system, monitoring physical activity is essential, even for research on nutritional, metabolic, or neuromuscular issues. To support an ambulant study at the German Aerospace Center (DLR), a pattern recognition system for human activity was developed. Everyday activi-ties of static (standing, sitting, lying) and dynamic nature (walking, ascending stairs, descending stairs, jogging) were under consideration. Two tri-axial accelerometers were attached to the hip and parallel to the tibia. Pattern characterizing features from the time domain (mean, standard deviation, absolute maximum) and the frequency domain (main frequencies, spectral entropy, autoregressive coefficients, signal magni-tude area) were extracted. Artificial neural networks (ANN) with a feedforward topology were trained with backpropagation as supervised learning algorithm. An evaluation of the resulting classifier was conducted with 14 subjects completing an activity protocol and a free chosen course of activities. An individual ANN was trained for each subject. Accuracies of 87,99 % and 71,23 % were approached in classifying the activity protocol and the free run, respectively. Reliabilities of 96,49 % and 76,77 % were measured. These performance parameters represent a working ambulant physical activity monitoring system.

elib-URL des Eintrags:https://elib.dlr.de/95630/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Human Activity Pattern Recognition from Accelerometry Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jos, DennisNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2013
Referierte Publikation:Ja
Open Access:Ja
Seitenanzahl:106
Status:nicht veröffentlicht
Stichwörter:Activity recognition, accelerometer, artificial neural networks, ambulatory monitoring, supervised learning
Institution:RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG
Abteilung:Medizinische Informatik
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Integrative Studien (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Luft- und Raumfahrtmedizin > Weltraumphysiologie
Hinterlegt von: Becker, Christine
Hinterlegt am:17 Mär 2015 09:11
Letzte Änderung:31 Jul 2019 19:52

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.