Bigdeli, Behnaz und Samadzadegan, Farhad und Reinartz, Peter (2015) Fusion of hyperspectral and LIDAR data using decisiontemplate-based fuzzy multiple classifier system. International Journal of Applied Earth Observation and Geoinformation, 38, Seiten 309-320. Elsevier. doi: 10.1016/j.jag.2015.01.017. ISSN 0303-2434.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0303243415000306
Kurzfassung
Regarding to the limitations and benefits of remote sensing sensors, fusion of remote sensing data from multiple sensors such as hyperspectral and LIDAR (light detection and ranging) is effective at land cover classification. Hyperspectral images (HSI) provide a detailed description of the spectral signatures of classes, whereas LIDAR data give height detailed information. However, because of the more complexities and mixed information in LIDAR and HSI, traditional crisp classification methods could not be more efficient. In this situation, fuzzy classifiers could deliver more satisfactory results than crisp classification approaches. Also, referring to the limitation of single classifiers, multiple classifier system (MCS) may exhibit better performance in the field of multi-sensor fusion. This paper presents a fuzzy multiple classifier system for fusions of HSI and LIDAR data based on decision template (DT). After feature extraction and feature selection on each data, all selected features of both data are applied on a cube. Then classifications were performed by fuzzy k-nearest neighbour (FKNN) and fuzzy maximum likelihood (FML) on cube of features. Finally, a fuzzy decision fusion method is utilized to fuse the results of fuzzy classifiers. In order to assess fuzzy MCS proposed method, a crisp MCS based on support vector machine (SVM), KNN and maximum likelihood (ML) as crisp classifiers and naive Bayes (NB) as crisp classifier fusion method is applied on selected cube feature. A co-registered HSI and LIDAR data set from Houston of USA was available to examine the effect of proposed MCSs. Fuzzy MCS on HSI and LIDAR data provide interesting conclusions on the effectiveness and potentialities of the joint use of these two data.
elib-URL des Eintrags: | https://elib.dlr.de/95562/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Fusion of hyperspectral and LIDAR data using decisiontemplate-based fuzzy multiple classifier system | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juni 2015 | ||||||||||||||||
Erschienen in: | International Journal of Applied Earth Observation and Geoinformation | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 38 | ||||||||||||||||
DOI: | 10.1016/j.jag.2015.01.017 | ||||||||||||||||
Seitenbereich: | Seiten 309-320 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
Name der Reihe: | Elsevier International Journals | ||||||||||||||||
ISSN: | 0303-2434 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | LIDAR; Hyperspectral; Fuzzy classification; Multiple classifier system; Sensor fusion | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 20 Mär 2015 16:11 | ||||||||||||||||
Letzte Änderung: | 22 Jun 2023 10:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags