Alonso, Kevin und Datcu, Mihai (2014) Knowledge-driven image mining system for Big Earth Observation data fusion: GIS maps inclusion in active learning stage. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2014, Seiten 3538-3541. IEEE Xplore. IGARSS 2014, 2014-07-13 - 2014-07-18, Quebec City, Canada. doi: 10.1109/IGARSS.2014.6947246.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6947246
Kurzfassung
In this paper, we present an accelerated knowledge-driven content-based information mining system for Big Earth Observation data fusion. The tool combines, at pixel level, the unsupervised clustering results of different number of features. The features, extracted from different EO raster image types and from existing GIS vector maps, are combined, in form of a BoW, with a user given semantic concepts in order to calculate the posterior probability that allows the final search. The inclusion of GIS data during the active learning, based on Bayesian networks, accelerate the definition processes of semantic labels and retrieve the related images with only a few user interactions. The inclusion of GIS data in conjunction with the recently introduced search algorithm have as a result a system which greatly optimizes the computational costs and over performs existing similar systems in various orders of magnitude.
elib-URL des Eintrags: | https://elib.dlr.de/94386/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Knowledge-driven image mining system for Big Earth Observation data fusion: GIS maps inclusion in active learning stage | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2014 | ||||||||||||
Erschienen in: | Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2014 | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IGARSS.2014.6947246 | ||||||||||||
Seitenbereich: | Seiten 3538-3541 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | IEEE Xplore | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Active Learning, Bag of Words, Bayesian Networks, Big data, Data Fusion, GIS, Image Mining | ||||||||||||
Veranstaltungstitel: | IGARSS 2014 | ||||||||||||
Veranstaltungsort: | Quebec City, Canada | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 13 Juli 2014 | ||||||||||||
Veranstaltungsende: | 18 Juli 2014 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||
Hinterlegt am: | 08 Jan 2015 16:41 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags