Babaee, Mohammadreza und Tsoukalas, Stefanos und Rigoll, Gerhard und Datcu, Mihai (2014) Discriminative Feature Learning from SAR Images for Data Clustering. In: Proceedings of the 2014 Conference on Big Data from Space (BiDS'14), Seiten 283-286. Publications Office of the European Union. Big Data from Space - BiDS'14, 2014-11-12 - 2014-11-14, Frascati, Italien. doi: 10.2788/1823. ISBN 978-92-79-43252-1. ISSN 1831-9424.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://dx.doi.org/10.2788/1823
Kurzfassung
Clustering of Earth Observation (EO) images has gained a high amount of attention in remote sensing and data mining. Here, each image is represented by a high-dimensional feature vector which could be computed as the results of coding algorithms of extracted local descriptors or raw pixel values. In this work, we propose to learn the features using discriminative Nonnegative Matrix factorization (DNMF) to represent each image. Here, we use the label of some images to produce new representation of images with more discriminative property. To validate our algorithm, we apply the proposed algorithm on a dataset of Synthetic Aperture Radar (SAR) and compare the results with the results of state-of-the-art techniques for image representation. The results confirm the capability of the proposed method in learning discriminative features leading to higher accuracy in clustering.
elib-URL des Eintrags: | https://elib.dlr.de/94229/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Discriminative Feature Learning from SAR Images for Data Clustering | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2014 | ||||||||||||||||||||
Erschienen in: | Proceedings of the 2014 Conference on Big Data from Space (BiDS'14) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.2788/1823 | ||||||||||||||||||||
Seitenbereich: | Seiten 283-286 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Publications Office of the European Union | ||||||||||||||||||||
ISSN: | 1831-9424 | ||||||||||||||||||||
ISBN: | 978-92-79-43252-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Feature Learning, Nonnegative Matrix Factorization, Clustering | ||||||||||||||||||||
Veranstaltungstitel: | Big Data from Space - BiDS'14 | ||||||||||||||||||||
Veranstaltungsort: | Frascati, Italien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 12 November 2014 | ||||||||||||||||||||
Veranstaltungsende: | 14 November 2014 | ||||||||||||||||||||
Veranstalter : | European Commission, Joint Research Centre | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||||||
Hinterlegt am: | 07 Jan 2015 15:58 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags