elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Data Analytics for Rapid Mapping: Case Study of a Flooding Event in Germany and the Tsunami in Japan Using Very High Resolution SAR Images

Dumitru, Corneliu Octavian und Cui, Shiyong und Faur, Daniela und Datcu, Mihai (2015) Data Analytics for Rapid Mapping: Case Study of a Flooding Event in Germany and the Tsunami in Japan Using Very High Resolution SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (1), Seiten 114-129. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2014.2320777. ISSN 1939-1404.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6819782

Kurzfassung

In this paper, we present data analytics for a quantitative analysis in a rapid mapping scenario applied for damage assessment of the 2013 floods in Germany and the 2011 tsunami in Japan. These scenarios are created using pre- and postdisaster TerraSAR-X images and a semi-automated processing chain. All our dataset is tiled into patches and Gabor filters are applied as a primitive feature extraction method to each patch separately. A support vector machine with relevance feedback is implemented in order to group the features into categories. Once all categories are identified, these are semantically annotated using reference data as ground truth. In our investigation, nondamaged and damaged categories were retrieved with their specific taxonomies defined using our previous hierarchical annotation scheme. The classifier supports rapid mapping scenarios (e.g., floods in Germany and tsunami in Japan) and interactive mapping generation. The quantitative damages can be assessed by: 1) flooded agricultural areas (21.66% in the case of floods in Germany and 4.15% in the case of tsunami in Japan) and destroyed aquaculture (2.33% in the case of tsunami in Japan); 2) destroyed transportation infrastructures, such as airport (50% in case tsunami in Japan), bridges, and roads.; and 3) debris that appears in postdisaster images (3.81% in the case of tsunami after the aquaculture was destroyed). The first analysis envisages the floods of Elbe river in June 2013: 30% of the investigated area, about ${bf 179}nbsphbox{bf km}^{bf 2}$ , including agricultural land, forest, river, and some residential and industrial areas close to the river, was covered by water. The second analysis, considering an area of ${bf 59}nbsphbox{bf km}^{bf 2}$ affected by the tsunami, led us to conclude that 3 months after the tsunami, some of the categories returned to previous functionality—the airport, othe- s return to partial functionality such as isolated residents, and some were totally destroyed—the aquaculture. The flooded area was about ${bf 59}nbsphbox{bf km}^{bf 2}$ . The proposed approach goes beyond a simple annotation of the data and provides an intermediate product in order to produce a relevant visual analytics representation of the data. This makes it easier to compare datasets and different quantitative findings in a meaningful manner, accessible both to experts and regular users. Our paper presents an interactive and automatic, fast processing method applicable to large and complex datasets (such as image time series). In addition to enhancing the information content extraction (number of identified categories), this approach enables the discovery and analysis of these categories. The novelty of this paper resides in that this is the first time data analytics have been run on a large dataset and for different scenarios using a semi-automated processing chain.

elib-URL des Eintrags:https://elib.dlr.de/93680/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:Article#: 2320777
Titel:Data Analytics for Rapid Mapping: Case Study of a Flooding Event in Germany and the Tsunami in Japan Using Very High Resolution SAR Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dumitru, Corneliu OctavianCorneliu.Dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cui, Shiyongshiyong.cui (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Faur, DanielaUniversity Politehnica of Bucharest, Bucharest, RomaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, Mihaimihai.datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Januar 2015
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:8
DOI:10.1109/JSTARS.2014.2320777
Seitenbereich:Seiten 114-129
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Chanussot, Jocelynjocelyn.chanussot (at) gipsa-lab.grenoble-inp.frNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Annotation, TerraSAR-X, data analytics, disaster, flooding, rapid mapping, scenario, taxonomy, tsunami
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von:UNGÜLTIGER BENUTZER
Hinterlegt am:17 Dez 2014 09:20
Letzte Änderung:27 Nov 2023 12:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.