Schreiber, Andreas (2014) Quantified Self: Analyzing the Big Data of our Daily Life. PyData Berlin 2014, 2014-07-25 - 2014-07-27, Berlin.
PDF (Slides)
5MB |
Offizielle URL: http://pydata.org/berlin2014/abstracts/#231
Kurzfassung
Applications for self tracking that collect, analyze, or publish personal and medical data are getting more popular. This includes either a broad variety of medical and healthcare apps in the fields of telemedicine, remote care, treatment, or interaction with patients, and a huge increasing number of self tracking apps that aims to acquire data form from people’s daily life. The Quantified Self movement goes far beyond collecting or generating medical data. It aims in gathering data of all kinds of activities, habits, or relations that could help to understand and improve one’s behavior, health, or well-being. Both, health apps as well as Quantified Self apps use either just the smartphone as data source (e.g., questionnaires, manual data input, smartphone sensors) or external devices and sensors such as ‘classical’ medical devices (e.g,. blood pressure meters) or wearable devices (e.g., wristbands or eye glasses). The data can be used to get insights into the medical condition or one’s personal life and behavior. This talk will provide an overview of the various data sources and data formats that are relevant for self tracking as well as strategies and examples for analyzing that data with Python.
elib-URL des Eintrags: | https://elib.dlr.de/93350/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Quantified Self: Analyzing the Big Data of our Daily Life | ||||||||
Autoren: |
| ||||||||
Datum: | 26 Juli 2014 | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Quantified Self, Big data, Python, pandas, Self Tracking, telemedicine, mHealth, | ||||||||
Veranstaltungstitel: | PyData Berlin 2014 | ||||||||
Veranstaltungsort: | Berlin | ||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||
Veranstaltungsbeginn: | 25 Juli 2014 | ||||||||
Veranstaltungsende: | 27 Juli 2014 | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben SISTEC (alt) | ||||||||
Standort: | Köln-Porz | ||||||||
Institute & Einrichtungen: | Institut für Simulations- und Softwaretechnik > Verteilte Systeme und Komponentensoftware | ||||||||
Hinterlegt von: | Schreiber, Andreas | ||||||||
Hinterlegt am: | 09 Dez 2014 14:17 | ||||||||
Letzte Änderung: | 24 Apr 2024 19:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags