elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Classifier Directed Data Hybridization for Geographic Sample Supervised Segment Generation

Fourie, Christoffel Ettienne und Schöpfer, Elisabeth (2014) Classifier Directed Data Hybridization for Geographic Sample Supervised Segment Generation. Remote Sensing, 6, Seiten 11852-11882. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs61211852. ISSN 2072-4292.

[img] PDF
41MB

Offizielle URL: http://www.mdpi.com/journal/remotesensing

Kurzfassung

Quality segment generation is a well-known challenge and research objective within Geographic Object-based Image Analysis (GEOBIA). Although methodological avenues within GEOBIA are diverse, segmentation commonly plays a central role in most approaches, influencing and being influenced by surrounding processes. A general approach using supervised quality measures, specifically user provided reference segments, suggest casting the parameters of a given segmentation algorithm as a multidimensional search problem. In such a sample supervised segment generation approach, spatial metrics observing the user provided reference segments may drive the search process. The search is commonly performed by metaheuristics. A novel sample supervised segment generation approach is presented in this work, where the spectral content of provided reference segments is queried. A one-class classification process using spectral information from inside the provided reference segments is used to generate a probability image, which in turn is employed to direct a hybridization of the original input imagery. Segmentation is performed on such a hybrid image. These processes are adjustable, interdependent and form a part of the search problem. Results are presented detailing the performances of four method variants compared to the generic sample supervised segment generation approach, under various conditions in terms of resultant segment quality, required computing time and search process characteristics. Multiple metrics, metaheuristics and segmentation algorithms are tested with this approach. Using the spectral data contained within user provided reference segments to tailor the output generally improves the results in the investigated problem contexts, but at the expense of additional required computing time.

elib-URL des Eintrags:https://elib.dlr.de/93087/
Dokumentart:Zeitschriftenbeitrag
Titel:Classifier Directed Data Hybridization for Geographic Sample Supervised Segment Generation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fourie, Christoffel EttienneChristoffel.Fourie (at) gmail.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schöpfer, Elisabethelisabeth.schoepfer (at) dlr.dehttps://orcid.org/0000-0002-6496-4744NICHT SPEZIFIZIERT
Datum:28 November 2014
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:6
DOI:10.3390/rs61211852
Seitenbereich:Seiten 11852-11882
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:geographic object-based image analysis; segmentation; classification; sample supervised; spatial metrics; metaheuristics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Zivile Kriseninformation und Georisiken (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Schöpfer, Dr. Elisabeth
Hinterlegt am:04 Dez 2014 14:40
Letzte Änderung:29 Nov 2023 08:30

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.