elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Object Recognition Based on the Context Aware Decision-Level Fusion in Multiviews Imagery

Mahmoudi, Fatemeh Tabib und Samadzadegan, F. und Reinartz, Peter (2015) Object Recognition Based on the Context Aware Decision-Level Fusion in Multiviews Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (1), Seiten 12-21. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2014.2362103. ISSN 1939-1404.

[img] PDF
1MB

Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6945375

Kurzfassung

Spectral similarities and spatial adjacencies between various kinds of objects, shadow, and occluded areas behind high-rise objects as well as the complex relationships between various object types lead to the difficulties and ambiguities in object recognition in urban areas. Using a knowledge base containing the contextual information together with the multiviews imagery may improve the object recognition results in such a situation. The proposed object recognition strategy in this paper has two main stages: single view and multiviews processes. In the single view process, defining region’s properties for each of the segmented regions, the object-based image analysis (OBIA) is performed independently on the individual views. In the second stage, the classified objects of all views are fused together through a decision-level fusion based on the scene contextual information in order to refine the classification results. Sensory information, analyzing visibility maps, height, and the structural characteristics of the multiviews classified objects define the scene contextual information. Evaluation of the capabilities of the proposed context aware object recognition methodology is performed on two datasets: 1) multiangular Worldview-2 satellite images over Rio de Janeiro in Brazil and 2) multiviews digital modular camera (DMC) aerial images over a complex urban area in Germany. The obtained results represent that using the contextual information together with a decision-level fusion of multiviews, the object recognition difficulties and ambiguities are decreased and the overall accuracy and the kappa are gradually improved for both of theWorldView-2 and the DMC datasets.

elib-URL des Eintrags:https://elib.dlr.de/92968/
Dokumentart:Zeitschriftenbeitrag
Titel:Object Recognition Based on the Context Aware Decision-Level Fusion in Multiviews Imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mahmoudi, Fatemeh TabibUniversity of Tehran, Tehran, IranNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Samadzadegan, F.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:Januar 2015
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:8
DOI:10.1109/JSTARS.2014.2362103
Seitenbereich:Seiten 12-21
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Chanussot, Jocelynjocelyn.chanussot (at) gipsa-lab.grenoble-inp.frNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Contextual information, decision-level fusion, object recognition, visibility analysis
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von:UNGÜLTIGER BENUTZER
Hinterlegt am:03 Dez 2014 09:54
Letzte Änderung:28 Mär 2023 23:42

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.