Mühl, C. und Jeunet, Camille und Lotte, Fabien (2014) EEG-based workload estimation across affective contexts. Frontiers in Neuroscience, 8 (114), Seiten 1-15. Frontiers Media S.A.. doi: 10.3389/fnins.2014.00114. ISSN 1662-4548.
PDF
2MB |
Kurzfassung
Workload estimation from electroencephalographic signals (EEG) offers a highly sensitive tool to adapt the human–computer interaction to the user state. To create systems that reliably work in the complexity of the real world, a robustness against contextual changes (e.g., mood), has to be achieved. To study the resilience of state-of-the-art EEG-based workload classification against stress we devise a novel experimental protocol, in which we manipulated the affective context (stressful/non-stressful) while the participant solved a task with two workload levels. We recorded self-ratings, behavior, and physiology from 24 participants to validate the protocol. We test the capability of different, subject-specific workload classifiers using either frequency-domain, time-domain, or both feature varieties to generalize across contexts. We show that the classifiers are able to transfer between affective contexts, though performance suffers independent of the used feature domain. However, cross-context training is a simple and powerful remedy allowing the extraction of features in all studied feature varieties that are more resilient to task-unrelated variations in signal characteristics. Especially for frequency-domain features, across-context training is leading to a performance comparable to within-context training and testing. We discuss the significance of the result for neurophysiology-based workload detection in particular and for the construction of reliable passive brain–computer interfaces in general.
elib-URL des Eintrags: | https://elib.dlr.de/92124/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | EEG-based workload estimation across affective contexts | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2014 | ||||||||||||||||
Erschienen in: | Frontiers in Neuroscience | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 8 | ||||||||||||||||
DOI: | 10.3389/fnins.2014.00114 | ||||||||||||||||
Seitenbereich: | Seiten 1-15 | ||||||||||||||||
Verlag: | Frontiers Media S.A. | ||||||||||||||||
ISSN: | 1662-4548 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | workload, stress, brain–computer interface, classification, electroencephalography, passive brain computer interface | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Luftverkehrsmanagement und Flugbetrieb | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L AO - Air Traffic Management and Operation | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Faktor Mensch und Sicherheit in der Luftfahrt (alt) | ||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||
Institute & Einrichtungen: | Institut für Luft- und Raumfahrtmedizin > Flugphysiologie | ||||||||||||||||
Hinterlegt von: | Martin, Sophie | ||||||||||||||||
Hinterlegt am: | 03 Dez 2014 11:10 | ||||||||||||||||
Letzte Änderung: | 14 Dez 2019 04:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags