elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Remote sensing of vegetation dynamics in West Africa: improved satellite time series for phenological analyses

Knauer, Kim und Gessner, Ursula und Dech, Stefan und Künzer, Claudia (2014) Remote sensing of vegetation dynamics in West Africa: improved satellite time series for phenological analyses. ESA Advanced Training Course on Land Remote Sensing, 2014-09-08 - 2014-09-12, Valencia, Spanien.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Vegetation dynamics and the lives of millions of people in West Africa are closely interlinked with each other. The high annual variability of the phenological cycle considerably affects the agricultural population with late rainfalls and droughts, often resulting in serious food crises. On the other hand, the rapidly growing population has a high need for space due to expanding cities and a low agricultural efficiency. This situation, together with a changing climate had a strong impact on vegetation dynamics in West Africa and will play a major role in the future. The mapping and monitoring of seasonal and long-term changes in West Africa’s vegetation is essential to understand the implications for nature and population. In order to cover the spatial extent of West Africa and, at the same time, to track the temporal development of vegetation, time series analysis of remote sensing data are a valuable tool. A considerable amount of research has been conducted on this topic in West Africa during the past 30 years which was reviewed and summarized in a first step of this PhD thesis. The result of this effort was handed in as an article and already accepted for publication in the International Journal of Remote Sensing (Knauer et al., 2014). At the moment, there are several remotely sensed time series of vegetation parameters available, but for an application in sub-humid to arid regions like West Africa, all of these products have their advantages and disadvantages mainly related to the sensor characteristics. In areas with persistent cloud coverage like the coastal regions of West Africa, time series of sensors with sun-synchronous orbits such as the MODIS sensor are highly affected by data gaps. In contrast, geostationary satellite sensors such as the MSG SEVIRI sensor, which has a fixed position over Africa, can overcome this problem but have the issue of a rather coarse spatial resolution. The complementary strengths of available satellite sensors could result in an optimized vegetation parameter time series that is suitable for regional application in sub-humid to arid regions like West Africa. In this PhD thesis, a data fusion of two different satellite sensors is intended in order to overcome the issues mentioned above and to allow for a consistent analysis of vegetation dynamics in West Africa. For this purpose, an established fusion algorithm (ESTARFM) will be applied and modified in order to fill the gaps in the MODIS dataset with data from the SEVIRI sensor. Based on this improved dataset, the land surface phenology of West African vegetation will be investigated. Different parameters for the monitoring of seasonal and long-term changes of vegetation will be derived from the time series and tested for their suitability. Currently, the preprocessing of the two sensors’ data as well as the modification of the fusion algorithm is conducted.

elib-URL des Eintrags:https://elib.dlr.de/90756/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Remote sensing of vegetation dynamics in West Africa: improved satellite time series for phenological analyses
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Knauer, Kimkim.knauer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gessner, Ursulaursula.gessner (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dech, Stefanstefan.dech (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Künzer, ClaudiaClaudia.Kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2014
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Remote Sensing, Vegetation Dynamics, Phenology, West Africa, Data Fusion
Veranstaltungstitel:ESA Advanced Training Course on Land Remote Sensing
Veranstaltungsort:Valencia, Spanien
Veranstaltungsart:internationale Konferenz, Workshop
Veranstaltungsbeginn:8 September 2014
Veranstaltungsende:12 September 2014
Veranstalter :ESA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Fernerkundung der Landoberfläche (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Leitungsbereich DFD
Hinterlegt von: Knauer, Kim
Hinterlegt am:29 Sep 2014 11:17
Letzte Änderung:24 Apr 2024 19:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.