Planinsic, Peter und Singh, Jagmal und Dusan, Gleich (2014) SAR Image Categorization Using Parametric and Nonparametric Approaches Within a Dual Tree CWT. IEEE Geoscience and Remote Sensing Letters, 11 (10), Seiten 1757-1761. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2014.2308328. ISSN 1545-598X.
PDF
539kB |
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6787006
Kurzfassung
This letter presents synthetic aperture radar (SAR) image classification based on feature descriptors within the discrete wavelet transform (DWT) domain using parametric and nonparametric features. The DWT enables an efficient multiresolution description of SAR images due to its geometric and stochastic features. A 2-D DWT, a real 2-D oriented dual tree wavelet transform (2-D RODTWT) and an oriented dual tree complex wavelet transform (2-D ODTCWT) were used for the estimation of subband features. First and second moments, entropy, coding gain, and fractal dimension were used for the nonparametric approach. A parametric approach considers a Gauss Markov Random Field model for feature extraction. A database with 2000 images representing 20 different classes with 100 images per class was used for classification efficiency assessment. Several SAR scenes were divided into small patches with dimension of 200 × 200 pixels. 10% and 20% of the test images per class were used during the learning stage. Supervised learning using a support vector machine was used for all experiments. The experimental results showed that the proposed methods had superior performances compared with (GLCM) and log comulants of Fourier transform. Amongst the proposed methods, the nonparametric features within oriented dual tree complex wavelet transform gave the best results for classes when categorizing SAR images.
elib-URL des Eintrags: | https://elib.dlr.de/90295/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | SAR Image Categorization Using Parametric and Nonparametric Approaches Within a Dual Tree CWT | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Mai 2014 | ||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 11 | ||||||||||||||||
DOI: | 10.1109/LGRS.2014.2308328 | ||||||||||||||||
Seitenbereich: | Seiten 1757-1761 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Data mining, feature extraction, image texture analysis, support vector machines (SVMs), wavelet transforms | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 26 Sep 2014 17:14 | ||||||||||||||||
Letzte Änderung: | 23 Jul 2022 13:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags