Fichtelmann, Bernd und Borg, Erik und Günther, Kurt P. (2014) Adaption of a Self-Learning Algorithm for Dynamic Classification of Water Bodies to MERIS Data. In: 14th International Conference on Computational Science and Its Applications, ICCSA 2014, Seiten 393-407. ICCSA 2014, 2014-06-30 - 2014-07-03, Guimarães, Portugal. doi: 10.1007/978-3-319-09144-0_26. ISBN 978-3-319-09143-3.
Dies ist die aktuellste Version dieses Eintrags.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Abstract. In many global applications of remote sensing land-water masks can improve the interpretation results. Their use can be of advantage to distinguish between different types of dark areas (e.g. cloud or topographic shadows, burned areas, coniferous forests, water areas). On one hand, water bodies cannot always be classified exactly on basis of available remote sensing data. On the other hand static land-water masks of different quality are available. But the main deficiencies are caused by the fact that land-water masks represent only a temporal snapshot of the water bodies. A dynamic self-learning water masking approach was developed at first for AATSR data to combine the advantages of static mask with results of pre-classifications. This paper presents the adaption of this procedure for MERIS remote sensing data. As before with AATSR data the aim consists in integrating high-quality water masks in processing chains for deriving value-added remote sensing data products. The results for some regional examples demonstrate the quality of masks and the advantages to conventional water masking algorithms. Furthermore, it will be discussed, that it is useful for a global water mask of high quality to integrate further special masks as cloud or in particular terrain shadow masks. At least, the land-water mask plays not only an important role in complex processing chains itself is the result of a complex procedure. Beside the results have shown successful transfer of a developed processing scheme for operational deriving of actual land-water masks to data of a second sensor, the adaption to further sensors or the adaption of the processor to other object types as e.g. forest will be possible in future as part of operational monitoring systems.
elib-URL des Eintrags: | https://elib.dlr.de/89740/ | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||||||||||
Titel: | Adaption of a Self-Learning Algorithm for Dynamic Classification of Water Bodies to MERIS Data | ||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||
Datum: | Juli 2014 | ||||||||||||||||||||||||||||||||||||||||
Erschienen in: | 14th International Conference on Computational Science and Its Applications, ICCSA 2014 | ||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-319-09144-0_26 | ||||||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 393-407 | ||||||||||||||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||||||||||||||
Name der Reihe: | Springer Cham Heidelberg NewYork Dordrecht London | ||||||||||||||||||||||||||||||||||||||||
ISBN: | 978-3-319-09143-3 | ||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||
Stichwörter: | self-learning algorithm, land-water mask, interpretation, remote sensing, MERIS data, cloud cover | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | ICCSA 2014 | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Guimarães, Portugal | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 30 Juni 2014 | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 3 Juli 2014 | ||||||||||||||||||||||||||||||||||||||||
Veranstalter : | University of Minho, Portugal | ||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Fernerkundung der Landoberfläche (alt) | ||||||||||||||||||||||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum Deutsches Fernerkundungsdatenzentrum > Nationales Bodensegment | ||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Fichtelmann, Dr.rer.nat. Bernd | ||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 17 Jul 2014 09:50 | ||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 19:55 |
Verfügbare Versionen dieses Eintrags
- Adaption of a Self-Learning Algorithm for Dynamic Classification of Water Bodies to MERIS Data. (deposited 17 Jul 2014 09:50) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags