elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Semantic Annotation and Ontologies for the TerraSAR-X Image Products

Datcu, Mihai und Dumitru, Corneliu Octavian (2013) Semantic Annotation and Ontologies for the TerraSAR-X Image Products. In: Proceeding of 5th TerraSAR-X / 4th TanDEM-X Science Team Meeting. 5th TerraSAR-X Science Team Meeting, 2013-06-10 - 2013-06-14, Oberpfaffenhofen, Germany.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://sss.terrasar-x.dlr.de/papers_sci_meet_5/final/TSX_poster/38_datcu.pdf

Kurzfassung

In this article, we propose a new methodology used for annotating TerraSAR-X products in the data base of the PDGS. Because manual annotation is very difficult and inefficient, we propose a semi-automated procedure in order to annotate TerraSAR-X datasets. Since for high resolution images, pixel-based methods do not capture the contextual information (complex structures are usually a mixture of regions and cover many pixels; different distributions of the same object can have different semantic meanings), and the global features describing the overall properties of images are not accurate enough. Therefore, the general approach adopted is to tile TerraSAR-X images into a number of no-overlapping sub-images (called patches) and to perform the feature extraction associated with these patches. In order to annotate the test dataset the following steps shall be applied to each product: 1) Group the scenes (products) in collections. 2) Select the optimal SAR image descriptors for given resolution, pixel spacing, optimal patch size, incidence angle, and orbit direction that corresponds to the basic detected TerraSAR-X products. 3) Tile the product-image into patches. 4) Generate a quick-look (in “jpg” format without rescaling the data) of each patch and also a quick-look of the full image needed for visualization. 5) Compute the descriptors (primitive features) associated with each patch. Gabor filters are used as primitive features generators computing 4 scale and 6 orientations that gives us feature vectors of 48 components (computing the mean and variance of each scale and orientation). 6) Use a classifier in order to group the features into categories. A Support Vector Machine (SVM) with a relevance feedback (RF) was built. The SVM-RF tool supports users to search patches (the quick-look of these patches) of interest in a large repository having as a support the full image. This classifier is selected based on the state-of-the-art. The performances of this learning machine/classifier, reported in the literature, are very good and the kernel has the capacity to perform highly accurate classification using a very limited number of examples. A new Graphical User Interface (GUI) of this tool allows Human-Machine Interaction (HMI) to rank the automatically suggested images which are expected to be grouped in the class of relevance. The new visual support of the tool allows enhancing the quality of search results by giving positive and negative examples directly for a full image. 7) Annotate semantically each category using as visual support the ground truth of Google Earth and give an appropriate meaning to each category. After an appropriate label is found for each category the quick-looks that are belonging to this category are moved from the dataset into a folder bearing the name of the category. Once the generation of the category is finished, a new classification can start until all the patches from the dataset are annotated. The total number of scenes annotated until now amounts to 82 products, ca. 100 000 image patches for which 688 semantic categories were defined based on the hierarchical scheme. A 2 layers taxonomy is introduced in support of definition of an ontology for common understanding of the TerraSAR-X image products. The algorithms and tools are now under integration process in the TerraSAR-X PDGS for the generation of a new semantic catalogue.

elib-URL des Eintrags:https://elib.dlr.de/88982/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Semantic Annotation and Ontologies for the TerraSAR-X Image Products
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Datcu, Mihaimihai.datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dumitru, Corneliu Octavianoctavian.dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2013
Erschienen in:Proceeding of 5th TerraSAR-X / 4th TanDEM-X Science Team Meeting
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
NICHT SPEZIFIZIERTDFDNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Status:veröffentlicht
Stichwörter:TerraSAR-X Image Products
Veranstaltungstitel:5th TerraSAR-X Science Team Meeting
Veranstaltungsort:Oberpfaffenhofen, Germany
Veranstaltungsart:Workshop
Veranstaltungsbeginn:10 Juni 2013
Veranstaltungsende:14 Juni 2013
Veranstalter :DFD
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von:UNGÜLTIGER BENUTZER
Hinterlegt am:06 Mai 2014 17:48
Letzte Änderung:24 Apr 2024 19:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.