Babaee, Mohammadreza und Datcu, Mihai und Rigoll, Gerald (2013) Assessment of dimensionality reduction based on communication channel model; application to immersive information visualization. In: 2013 IEEE International Conference on Big Data, Seiten 1-6. IEEE Xplore. Big Data 2013, 2013-10-06 - 2013-10-09, Silicon Valley, CA, USA. doi: 10.1109/BigData.2013.6691726. ISBN doi: 10.1109/BigData.2013.6691726.
PDF
3MB |
Offizielle URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6679357
Kurzfassung
We are dealing with large-scale high-dimensional image data sets requiring new approaches for data mining where visualization plays the main role. Dimension reduction (DR) techniques are widely used to visualize high-dimensional data. However, the information loss due to reducing the number of dimensions is the drawback of DRs. In this paper, we introduce a novel metric to assess the quality of DRs in terms of preserving the structure of data. We model the dimensionality reduction process as a communication channel model transferring data points from a high-dimensional space (input) to a lower one (output). In this model, a co-ranking matrix measures the degree of similarity between the input and the output. Mutual information (MI) and entropy defined over the co-ranking matrix measure the quality of the applied DR technique. We validate our method by reducing the dimension of SIFT and Weber descriptors extracted from Earth Observation (EO) optical images. In our experiments, Laplacian Eigenmaps (LE) and Stochastic Neighbor Embedding (SNE) act as DR techniques. The experimental results demonstrate that the DR technique with the largest MI and entropy preserves the structure of data better than the others.
elib-URL des Eintrags: | https://elib.dlr.de/88828/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Assessment of dimensionality reduction based on communication channel model; application to immersive information visualization | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2013 | ||||||||||||||||
Erschienen in: | 2013 IEEE International Conference on Big Data | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/BigData.2013.6691726 | ||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
ISBN: | doi: 10.1109/BigData.2013.6691726 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Dimensionality Reduction; Immersive information Visualization; Communication channel; Quality Assessment | ||||||||||||||||
Veranstaltungstitel: | Big Data 2013 | ||||||||||||||||
Veranstaltungsort: | Silicon Valley, CA, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 6 Oktober 2013 | ||||||||||||||||
Veranstaltungsende: | 9 Oktober 2013 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 14 Apr 2014 15:07 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 19:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags