elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Numerical and Experimental Investigations on Highly Integrated Subsonic Air

Berens, Thomas M. und Delot, Anne-Laure und Tormalm, Magnus H. und Ruiz-Calavera, Luis P. und Funes-Sebastian, David E. und Rein, Martin und Säterskog, Michael und Ceresola, Nicola und Zurawski, Ludovic (2014) Numerical and Experimental Investigations on Highly Integrated Subsonic Air. 52nd Aerospace Sciences Meeting - AIAA SciTech, 2014-01-13 - 2014-01-17, National Harbor, Maryland, USA. doi: 10.2514/6.2014-0722.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://arc.aiaa.org | DOI: 10.2514/6.2014-0722

Kurzfassung

Aerodynamic integration of air intakes and the optimization of their performance are challenging tasks for innovative design of advanced unmanned aerial vehicles (UAVs). The extension of Computational Fluid Dynamics (CFD) into application areas such as dynamic intake distortion prediction and thus engine/intake compatibility is made possible by modern hybrid methods and increasing computer resources. Within the Aerodynamics Action Group AD/AG-46 “Highly Integrated Subsonic Air Intakes” of the Group for Aeronautical Research and Technology in EURope (GARTEUR), CFD computations were carried out for the EIKON UAV configuration, which was designed and wind tunnel tested at FOI in Sweden. The major objectives of AD/AG-46 were to investigate the capability of Detached Eddy Simulation (DES) methods for the analysis of unsteady flow phenomena of serpentine air intakes and the accuracy levels of the computations. Numerical results for a variety of wind tunnel conditions were compared with Reynolds-Averaged Navier-Stokes (RANS) and unsteady RANS (URANS) data as well as with experimental results. The impact of not considering the wind tunnel walls in the CFD calculations on the computational results was investigated, revealing that the ventilated walls of the T1500 wind tunnel eliminate the blockage of the model within the closed test section and that free stream conditions can be applied for the computational boundary conditions. Since intake lip shaping is a vital design parameter impacting the intake internal flow and performance, the original geometry was compared with a modified cowl while maintaining low-observability features of the W-shaped cowl design. A trade-off study between boundary layer diversion versus ingestion was performed numerically by applying Euler boundary conditions to the walls of the numerical model of the UAV configuration, thus simulating the total removal or diversion of the boundary layer. The computed inviscid results were compared with the viscous data, quantifying the losses in total pressure recovery and the increase in distortion for the ingested test cases. Internal flow control in the intake duct of the UAV configuration was studied by numerically applying vortex generators, and the results were compared with experimental data. Numerical models were employed in order to simulate micro-jets as active flow control devices in the serpentine duct. Increasing of jet velocities resulted in smaller areas of flow separation and thus led to beneficial total pressure recoveries and distortion parameters. At DLR in Göttingen experiments with a generic high aspect ratio diverterless intake model were performed in the cryogenic blowdown wind tunnel DNW-KRG with the goal of contributing to a better understanding and correlation of installed performance predictions of highly integrated innovative intake designs. In a parametric study the combined effects of boundary layer ingestion and an S-shaped intake diffuser on total pressure recovery and distortion at the engine face were investigated as a function of Mach number, Reynolds number, boundary layer thickness, and intake mass flow ratio.

elib-URL des Eintrags:https://elib.dlr.de/88154/
Dokumentart:Konferenzbeitrag (Vortrag)
Zusätzliche Informationen:AIAA 2014-0722; Chapter DOI: 10.2514/6.2014-0722; eISBN: 978-1-62410-256-1; DOI: 10.2514/masm14
Titel:Numerical and Experimental Investigations on Highly Integrated Subsonic Air
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Berens, Thomas M.CASSIDIAN EADS Deutschland GmbH, 85077 Manching, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Delot, Anne-LaureONERA – The French Aerospace Lab, F-92190 Meudon, FranceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tormalm, Magnus H.Swedish Defence Research Agency (FOI), SE-16490 Stockholm, SwedenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ruiz-Calavera, Luis P.AIRBUS MILITARY, 28906 Getafe (Madrid), SpainNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Funes-Sebastian, David E.AIRBUS MILITARY, 28906 Getafe (Madrid), SpainNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rein, Martinmartin.rein (at) dlr.dehttps://orcid.org/0000-0002-2670-2815151847369
Säterskog, MichaelSAAB AB, Aeronautics, 58188 Linköping, SwedenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ceresola, NicolaALENIA AERMACCHI, 10146 Torino, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zurawski, LudovicMBDA, 92358 Le Plessis-Robinson, FranceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2014
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.2514/6.2014-0722
Seitenbereich:Seiten 1-42
Name der Reihe:Conference Proceedings online
Status:veröffentlicht
Stichwörter:S-duct intake, serpentine intake, diverterless intake, intake lip shaping, boundary layer ingestion, boundary layer diversion, circumferential distortion descriptor, DC60, AIP, DNW-KRG, pressure variations, detached eddy simulation (DES), Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), flow control
Veranstaltungstitel:52nd Aerospace Sciences Meeting - AIAA SciTech
Veranstaltungsort:National Harbor, Maryland, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:13 Januar 2014
Veranstaltungsende:17 Januar 2014
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Starrflügler (alt)
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Starrflüglerforschung
DLR - Teilgebiet (Projekt, Vorhaben):L - Militärische Technologien (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Hochgeschwindigkeitskonfigurationen
Hinterlegt von: Micknaus, Ilka
Hinterlegt am:17 Feb 2014 13:11
Letzte Änderung:24 Apr 2024 19:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.