elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Modelling, stability analysis, and testing of a hybrid docking simulator

Zebenay, Melak und Boge, Toralf und Choukroun, Daniel (2013) Modelling, stability analysis, and testing of a hybrid docking simulator. AIAA Guidance Navigation and Control Conference, 2013-08-19 - 2013-08-22, Boston, MA, USA.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

A hardware-in-the-loop (HIL) simulation is a hybrid simulation that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is to simulate on-orbit servicing for verification and validation of the docking phase. The simulator essentially consists of two robots, with very accurate position controllers, holding a docking interface and a probe element, respectively. A key feature of the HIL docking simulator set-up is a feedback loop that is closed on the real force sensed at the docking interface during the contact with the probe, which is used in order to drive the free-floating bodies numerical simulation. The high stiffness of the robots causes the contact duration to be shorter than the (incompressible) time delay in the robots' dynamics. This leads to inconsistencies in the HIL docking simulation results and to potential instability and damage of the closed-loop system. This work presents a novel mitigation strategy to the given challenge, accompanied with stability analysis and validating experiments. The high-stiffness compliance issue is modified by combining virtual and real compliances in the software and hardware. The method is presented here for six degrees of freedom. Experimental results for the case of a translational motion along a single axis and the six degrees of freedom are presented, too. In addition, analysis is performed in order to characterize the stability region of the HIL docking simulator as a function of the contact force parameters, the time delay and the simulated satellites' masses. This hybrid contact dynamics model and the accompanying analysis is envisioned to provide a safe and flexible docking simulator tool. This tool shall allow reproduction of the desired impact dynamics for any stiffness and damping characteristics within the stability region.

elib-URL des Eintrags:https://elib.dlr.de/87059/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Modelling, stability analysis, and testing of a hybrid docking simulator
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zebenay, MelakDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Boge, ToralfDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Choukroun, DanielDelft University of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2013
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Satellite docking, Modeling, Stability analysis, Passive compliance device, Gravity compensation
Veranstaltungstitel:AIAA Guidance Navigation and Control Conference
Veranstaltungsort:Boston, MA, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 August 2013
Veranstaltungsende:22 August 2013
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben On-Orbit Servicing - GNC und VR (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Raumflugbetrieb und Astronautentraining > Raumflugtechnologie
Hinterlegt von: Frei, Heike
Hinterlegt am:19 Dez 2013 14:03
Letzte Änderung:18 Jun 2024 14:23

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.