elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Noise transmission analysis through a mechanically coupled finite double wall panel

Bhattacharya, Partha und Unruh, Oliver und Rose, Michael (2013) Noise transmission analysis through a mechanically coupled finite double wall panel. Acoustics 2013 New Delhi, 2013-11-10 - 2013-11-15, Neu Delhi, Indien.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Double wall panels with two structural leaves and air in between them form an integral part of aircraft fuselage, automobile bodies, glazed doors and windows in buildings etc. Although they are very efficient in reducing the acoustic radiation in general, they have a problem of mass-air-mass coupling in the vicinity of which the noise transmission is highly magnified, Furthermore, the two panels forming the double wall need to be mechanically connected which forms a path of acoustic transfer too. In the literatures available so far most of the noise transmission studies through double wall do not include the mechanical connectors. The studies are also limited to simplified structural forms and boundary conditions. In the present study an attempt is made to model the sound transmission behaviour through a finite double wall panel using a modal approach wherein the in-vacuo structural modes and rigid wall acoustic modes are coupled using Green’s Theorem. The two structural panels considered for this study are of size 0.5 m x 0.35 m x 0.002 m and 0.5 m x 0.35 m x 0.003 m, respectively. Two different separation thicknesses/gaps of 0.1 m and 0.05 m are taken into consideration to model the acoustic domain. The analysis domain in terms of frequency range was limited to 0 – 500 Hz. Modal analysis is performed in an ANSYS environment and the modal parameters are exported to a MATLAB environment where the analysis is carried out to obtain the transmission characteristics of the double wall. Results are compared with a full transient analysis of the complete system and it is observed that they are in very good agreement. However the major challenge in the present study was to incorporate the mechanical link of finite stiffness in the modal coupling of the two plates. It was observed that to obtain a good agreement with the full transient analysis with mechanical connections alone, mode shapes up to 2500 Hz have to be incorpo-rated in the modal analysis. Presently studies are being conducted to condense the higher

elib-URL des Eintrags:https://elib.dlr.de/86361/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Noise transmission analysis through a mechanically coupled finite double wall panel
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bhattacharya, ParthaJadavpur University, KolkataNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Unruh, OliverNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rose, MichaelNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2013
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Sound radiation, double walls
Veranstaltungstitel:Acoustics 2013 New Delhi
Veranstaltungsort:Neu Delhi, Indien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:10 November 2013
Veranstaltungsende:15 November 2013
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - keine Zuordnung (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Faserverbundleichtbau und Adaptronik > Adaptronik
Hinterlegt von: Böhringer-Thelen, Isolde
Hinterlegt am:09 Dez 2013 08:43
Letzte Änderung:23 Aug 2024 09:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.