elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Semantic Annotation in Earth Observation Based on Active Learning

Cui, Shiyong und Dumitru, Corneliu und Datcu, Mihai (2013) Semantic Annotation in Earth Observation Based on Active Learning. International Journal of Image and Data Fusion, 5 (2), Seiten 152-174. Taylor & Francis. doi: 10.1080/19479832.2013.858778. ISSN 1947-9832.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://dx.doi.org/10.1080/19479832.2013.858778

Kurzfassung

As the data acquisition capabilities of Earth Observation (EO) satellites have been improved significantly, a large amount of high resolution images are downlinked continuously to ground stations. The data volume increases rapidly beyond the users' capability to access the information content of the data. Thus, interactive systems that allow fast indexing of high resolution images based on image content are urgently needed. In this paper, we present an interactive learning system for semantic annotation and content mining at patch level. It mainly comprises four components: primitive feature extraction including both spatial and temporal features, relevance feedback based on active learning, a Human Machine Communication (HMC) interface, and data visualization. To overcome the shortage of training samples and to speed up the convergence, active learning is employed in this system. Two core components of active learning are the classifier training using already labeled image patches, and the sample selection strategy which selects the most informative samples for manual labeling. These two components work alternatively, significantly reducing the labeling effort and achieving fast indexing. In addition, our data visualization is particularly designed for multi-temporal and multi-sensor image indexing, where efficient visualization plays a critical role. The system is applicable to both optical and SAR images. It can index patches and it can also discover temporal patterns in satellite image time series. Three typical study cases are included to show its wide variety of use in EO applications.

elib-URL des Eintrags:https://elib.dlr.de/84675/
Dokumentart:Zeitschriftenbeitrag
Titel:Semantic Annotation in Earth Observation Based on Active Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cui, ShiyongShiyong.Cui (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dumitru, Corneliucorneliu.dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, Mihaimihai.datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2013
Erschienen in:International Journal of Image and Data Fusion
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:5
DOI:10.1080/19479832.2013.858778
Seitenbereich:Seiten 152-174
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Zhang, JixiangCASMNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Taylor & Francis
ISSN:1947-9832
Status:veröffentlicht
Stichwörter:Semantic annotation; image indexing; active learning; Earth observation; image information mining; multi-temporal image analysis; synthetic aperture radar (SAR)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Reinartz, Prof. Dr.. Peter
Hinterlegt am:17 Okt 2013 10:45
Letzte Änderung:20 Jun 2024 11:31

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.