elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data

Lethaus, Firas und Baumann, Martin und Köster, Frank und Lemmer, Karsten (2013) A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data. Neurocomputing, 121, Seiten 108-130. Elsevier. doi: 10.1016/j.neucom.2013.04.035. ISSN 0925-2312.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0925231213005705

Kurzfassung

Gaze behaviour is known to indicate information gathering. It is therefore suggested that it could be used to derive information about the driver's next planned objective in order to identify intended manoeuvres without relying solely on car data. Ultimately this would be practically realised by an Advanced Driver Assistance System (ADAS) using gaze data to correctly infer the intentions of the driver from what is implied by the incoming gaze data available to it. Neural Networks' ability to approximate arbitrary functions from observed data therefore makes them a candidate for modelling driver intent. Previous work has shown that significantly distinct gaze patterns precede each of the driving manoeuvres analysed indicating that eye movement data might be used as input to ADAS supplementing sensors, such as CAN-Bus (Controller Area Network), laser, radar or LIDAR (Light Detection and Ranging) in order to recognise intended driving manoeuvres. In this study, drivers' gaze behaviour was measured prior to and during the execution of different driving manoeuvres performed in a dynamic driving simulator. Artificial Neural Networks (ANNs), Bayesian Networks (BNs), and Naive Bayes Classifiers (NBCs) were then trained using gaze data to act as classifiers that predict the occurrence of certain driving manoeuvres. This has previously been successfully demonstrated with real traffic data [1]. Issues considered here included the amount of data that is used for predictive purposes prior to the manoeuvre, the accuracy of the predictive models at different times prior to the manoeuvre taking place and the relative difficulty of predicting a lane change left manoeuvre against predicting a lane change right manoeuvre.

elib-URL des Eintrags:https://elib.dlr.de/84190/
Dokumentart:Zeitschriftenbeitrag
Titel:A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lethaus, FirasDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Baumann, MartinDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Köster, FrankDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lemmer, KarstenDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2013
Erschienen in:Neurocomputing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:121
DOI:10.1016/j.neucom.2013.04.035
Seitenbereich:Seiten 108-130
Verlag:Elsevier
ISSN:0925-2312
Status:veröffentlicht
Stichwörter:Artificial Neural Networks, Bayesian Networks, Naive Bayes Classifiers, Driver intent, Eye tracking, Supervised learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Bodengebundener Verkehr (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V BF - Bodengebundene Fahrzeuge
DLR - Teilgebiet (Projekt, Vorhaben):V - Projekt Fahrerassistenz (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Automotive
Hinterlegt von: Lethaus, Firas
Hinterlegt am:11 Sep 2013 09:21
Letzte Änderung:07 Nov 2023 08:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.