elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Targeted Land Cover Classification

Marconcini, Mattia und Fernández-Prieto, Diego und Buchholz, Tim (2014) Targeted Land Cover Classification. IEEE Transactions on Geoscience and Remote Sensing, 52 (7), Seiten 4173-4193. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/tgrs.2013.2280150. ISSN 0196-2892.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6605596

Kurzfassung

This paper addresses a specific typology of land cover classification problems, hereinafter referred to as “targeted land cover classification”, where the objective is the identification of only one or few specific “targeted” land cover classes of interest, disregarding all the other potential classes present in the area under analysis. Such a challenging problem, which is common to a variety of operational information services and applications (e.g., agriculture, forestry, spatial planning, ecosystem monitoring, disaster management, habitat mapping, etc.), can be effectively solved by traditional supervised classification techniques provided that an exhaustive ground truth is available for all the land cover classes present in the region of interest. Such a requirement is seldom satisfied and presents several practical drawbacks and limitations, both in terms of time and economic cost that may render this task difficult to achieve in most real-life cases. However, the possibility to perform an effective targeted classification using only ground-truth samples for the class(es) of interest (hence avoiding the burden and cost associated with the collection of a full and exhaustive ground-truth information) would represent a significant advantage. In this paper, we present a novel technique capable of identifying specific land cover classes of interest by exploiting the ground truth only available for these targeted classes, while providing accuracies comparable to those of traditional fully-supervised methods. The proposed technique jointly exploits both the unlabeled samples of the image under investigation and the training samples only available for the targeted classes. In particular, the Expectation-Maximization (EM) algorithm and Markov random fields (MRF) are employed to estimate the probability density function of both the class(es) of interest and the unknown class representing the merger of all the unknown land cover classes characterizing the study area for which no ground-truth information is available. An extensive experimental analysis and cross-comparisons with both fully-supervised support vector machines (SVM) and ensembles of multiple one-class support vector data description (SVDD) classifiers on different datasets confirmed the effectiveness and the reliability of the proposed technique.

elib-URL des Eintrags:https://elib.dlr.de/83388/
Dokumentart:Zeitschriftenbeitrag
Titel:Targeted Land Cover Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Marconcini, MattiaMattia.Marconcini (at) dlr.dehttps://orcid.org/0000-0002-5042-5176NICHT SPEZIFIZIERT
Fernández-Prieto, DiegoDiego.Fernandez (at) esa.intNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Buchholz, Timtim.buchholz1978 (at) googlemail.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2014
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:52
DOI:10.1109/tgrs.2013.2280150
Seitenbereich:Seiten 4173-4193
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Land cover classification, one-class classifiers, expectation maximization, Markov random fields, targeted land cover classification, agriculture
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Fernerkundung der Landoberfläche (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Marconcini, Mattia
Hinterlegt am:17 Jul 2013 13:19
Letzte Änderung:29 Nov 2023 13:43

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.