elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data

Bigdeli, Behnaz und Samadzadegan, Farhad und Reinartz, Peter (2013) A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data. Journal of the Indian Society of Remote Sensing, 41 (4), Seiten 763-776. Springer. doi: 10.1007/s12524-013-0286-z. ISSN 0255-660X.

[img]
Vorschau
PDF
952kB

Offizielle URL: http://www.springer.com/earth+sciences+and+geography/journal/12524

Kurzfassung

With recent technological advances in remote sensing sensors and systems, very highdimensional hyperspectral data are available for a better discrimination among different complex landcover classes. However, the large number of spectral bands, but limited availability of training samples creates the problem of Hughes phenomenon or ‘curse of dimensionality’ in hyperspectral data sets. Moreover, these high numbers of bands are usually highly correlated. Because of these complexities of hyperspectral data, traditional classification strategies have often limited performance in classification of hyperspectral imagery. Referring to the limitation of single classifier in these situations, Multiple Classifier Systems (MCS) may have better performance than single classifier. This paper presents a new method for classification of hyperspectral data based on a band clustering strategy through a multiple Support Vector Machine system. The proposed method uses the band grouping process based on a modified mutual information strategy to split data into few band groups. After the band grouping step, the proposed algorithm aims at benefiting from the capabilities of SVM as classification method. So, the proposed approach applies SVM on each band group that is produced in a previous step. Finally, Naive Bayes (NB) as a classifier fusion method combines decisions of SVM classifiers. Experimental results on two common hyperspectral data sets show that the proposed method improves the classification accuracy in comparison with the standard SVM on entire bands of data and feature selection methods.

elib-URL des Eintrags:https://elib.dlr.de/83313/
Dokumentart:Zeitschriftenbeitrag
Titel:A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bigdeli, Behnazbigdeli (at) ut.ac.irNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Samadzadegan, Farhadsamadz (at) ut.ac.irNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, PeterPeter.Reinartz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Dezember 2013
Erschienen in:Journal of the Indian Society of Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:41
DOI:10.1007/s12524-013-0286-z
Seitenbereich:Seiten 763-776
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
George, JosephISRO, Ahmedabad, IndiaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Springer
Name der Reihe:Journal of the Indian Society of Remote Sensing
ISSN:0255-660X
Status:veröffentlicht
Stichwörter:Hyperspectral, Support, Vector, Machine, Multiple Classifier System, Bayesian Theory
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von:UNGÜLTIGER BENUTZER
Hinterlegt am:25 Sep 2013 17:50
Letzte Änderung:23 Jul 2022 13:43

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.