Venganzones, Miguel und Datcu, Mihai und Graa, Manuel (2013) Further results on dissimilarity spaces for hyperspectral images RF-CBIR. Pattern Recognition Letters, 34 (14), Seiten 1659-1668. Elsevier. doi: 10.1016/j.patrec.2013.05.025. ISSN 0167-8655.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0167865513002237
Kurzfassung
Content-Based Image Retrieval (CBIR) systems are powerful search tools in image databases that have been little applied to hyperspectral images. Relevance Feedback (RF) is an iterative process that uses machine learning techniques and user’s feedback to improve the CBIR systems performance. We pursued to expand previous research in hyperspectral CBIR systems built on dissimilarity functions defined either on spectral and spatial features extracted by spectral unmixing techniques, or on dictionaries extracted by dictionary-based compressors. These dissimilarity functions were not suitable for direct application in common machine learning techniques. We propose to use a RF general approach based on dissimilarity spaces which is more appropriate for the application of machine learning algorithms to the Hyperspectral RF-CBIR. We validate the proposed RF method for hyperspectral CBIR systems over a real hyperspectral dataset.
elib-URL des Eintrags: | https://elib.dlr.de/83107/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Further results on dissimilarity spaces for hyperspectral images RF-CBIR | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Oktober 2013 | ||||||||||||||||
Erschienen in: | Pattern Recognition Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 34 | ||||||||||||||||
DOI: | 10.1016/j.patrec.2013.05.025 | ||||||||||||||||
Seitenbereich: | Seiten 1659-1668 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 0167-8655 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | remote sensing, hyperspectral images, relevance feeedback, content-based image retrieval | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Schwarz, Gottfried | ||||||||||||||||
Hinterlegt am: | 28 Jun 2013 11:56 | ||||||||||||||||
Letzte Änderung: | 10 Jan 2014 16:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags