elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Incremental clustering

Ciucu, Mariana und Datcu, Mihai (2004) Incremental clustering. ESA-EUSC Conference 2004: Theory and Applications of Knowledge driven Image Information Mining, with focus on Earth Observation, Madrid, Spain, 17-18 March 2004.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://earth.esa.int/rtd/Events/ESA-EUSC_2004/

Kurzfassung

The generation of the objective information catalogue that enables further image mining functions needs the application of a similarity measure to group the points in the feature space. The generated clusters shall contain robust information on image-signal classes, and preserves an image and a spatial index. Due to the large volumes of data and to the incremental nature of the catalogue generation, "classical" clustering algorithms are limited in their use. For a new dataset we need to process all data set, the new and the old too. For these reasons we need a new algorithm compatible with the imposed conditions. We propose an algorithm for incremental clustering using grouping based on similarity of the local fractal dimension. By embedding the data set in an n-dimensional grid, we can compute the frequency with which data point fall into cell, and compute the fractal dimension. The fractal dimension is computed by box counting algorithm. The main concept of the algorithm is to add points incrementally to existing clusters, based on how they affect the fractal dimension of the cluster. The algorithm has two steps: initialization and cluster update. In the initialization step it is better if we have a sample of the dataset that is significant overall the feature space as that we can get a significant clustering (number and form), but we can work as well with a normal dataset. If the dataset used for initialization step does not reflect the true clusters structure, it is needed to do additional operations to optimize the groups of existing clusters, like splitting and merging. The algorithm requires one scan of the data, can cope with large dataset, needs only small space to describe the cluster (number of points of the box to use box counting algorithm), and is incremental.

elib-URL des Eintrags:https://elib.dlr.de/8281/
Dokumentart:Konferenzbeitrag (Paper)
Zusätzliche Informationen: LIDO-Berichtsjahr=2004,
Titel:Incremental clustering
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ciucu, MarianaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2004
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Veranstaltungstitel:ESA-EUSC Conference 2004: Theory and Applications of Knowledge driven Image Information Mining, with focus on Earth Observation, Madrid, Spain, 17-18 March 2004
Veranstalter :ESA-EUSC
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):NICHT SPEZIFIZIERT
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung
Hinterlegt von: Roehl, Cornelia
Hinterlegt am:26 Jan 2006
Letzte Änderung:06 Jan 2010 22:35

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.