elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Noise Reduction in Hyperspectral Images through Spectral Unmixing

Cerra, Daniele und Müller, Rupert und Reinartz, Peter (2014) Noise Reduction in Hyperspectral Images through Spectral Unmixing. IEEE Geoscience and Remote Sensing Letters, 11 (1), Seiten 109-113. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2013.2247562. ISSN 1545-598X.

[img] PDF (Final version) - Nur DLR-intern zugänglich
646kB
[img]
Vorschau
PDF (Preprint)
4MB

Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6488723

Kurzfassung

Spectral unmixing and denoising of hyperspectral images have always been regarded as separate problems. By considering the physical properties of a mixed spectrum, this letter introduces unmixing-based denoising, a supervised methodology representing any pixel as a linear combination of reference spectra in a hyperspectral scene. Such spectra are related to some classes of interest, and exhibit negligible noise influences, as they are averaged over areas for which ground truth is available. After the unmixing process, the residual vector is mostly composed by the contributions of uninteresting materials, unwanted atmospheric influences and sensor-induced noise, and is thus ignored in the reconstruction of each spectrum. The proposed method, in spite of its simplicity, is able to remove noise effectively for spectral bands with both low and high signal-to-noise ratio. Experiments show that this method could be used to retrieve spectral information from corrupted bands, such as the ones placed at the edge between ultraviolet and visible light frequencies, which are usually discarded in practical applications. The proposed method achieves better results in terms of visual quality in comparison to competitors, if the mean squared error is kept constant. This leads to questioning the validity of mean squared error as a predictor for image quality in remote sensing applications.

elib-URL des Eintrags:https://elib.dlr.de/82470/
Dokumentart:Zeitschriftenbeitrag
Titel:Noise Reduction in Hyperspectral Images through Spectral Unmixing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cerra, DanieleDaniele.Cerra (at) dlr.dehttps://orcid.org/0000-0003-2984-8315NICHT SPEZIFIZIERT
Müller, Rupertrupert.mueller (at) dlr.dehttps://orcid.org/0000-0002-3288-5814NICHT SPEZIFIZIERT
Reinartz, PeterPeter.Reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:Januar 2014
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.1109/LGRS.2013.2247562
Seitenbereich:Seiten 109-113
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Gamba, PaoloUniversity of Pavia; Pavia, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:IEEE - Institute of Electrical and Electronics Engineers
Name der Reihe:IEEE Geoscience and Remote Sensing Letters
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Denoising, hyperspectral images, image restoration, mean squared error, spectral unmixing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Cerra, Daniele
Hinterlegt am:31 Mai 2013 12:30
Letzte Änderung:29 Nov 2023 08:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.