Aravena Pelizari, Patrick (2013) Estimation of seismic building structural types using remote sensing and machine learning. Masterarbeit, Ludwig-Maximilians-Universität.
PDF
- Nur DLR-intern zugänglich
9MB | |
PDF
2MB |
Kurzfassung
The current trend of urbanization leads to an increase of seismic vulnerability in earthquake prone regions. There is great demand for methods contributing to a comprehensive analysis of seismic vulnerability to face the urgent challenges of mitigation and catastrophe management. Remote sensing has high potential to contribute to an area-wide and up-to-date assessment of seismic vulnerability. For an estimation of building stock damage the built-inventory is generally categorized into different seismic building structural types, representing a construction's seismical behavior. This study reveals indirect correlations between remotely sensed data and seismic building structural types, which enable a supervised classification. Site of research is the City of Padang, Indonesia, whose urban environment is characterized by 145 features calculated by means of high resolution optical imagery, height information from a normalized digital surface model and multi-temporal medium resolution optical data. In-situ building information is given through survey data collected after the earthquake event of September 2009. Using Machine Learning techniques a work flow is presented to classify seismic building structural types. A feature selection analysis is carried out, and the features most explanatory for the determination of seismic building structural types are identified. Coping with large amounts of features and in-situ data scarcity, plausible classification results are achieved and dependencies between remotely sensed data and building stability are verified.
elib-URL des Eintrags: | https://elib.dlr.de/81953/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Titel: | Estimation of seismic building structural types using remote sensing and machine learning | ||||||||
Autoren: |
| ||||||||
Datum: | 2013 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Nein | ||||||||
Seitenanzahl: | 130 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | remote sensing, machine learning, seismic building structural types, earthquake loss estimation | ||||||||
Institution: | Ludwig-Maximilians-Universität | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Zivile Kriseninformation und Georisiken (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||
Hinterlegt von: | Geiß, Christian | ||||||||
Hinterlegt am: | 17 Jul 2013 13:11 | ||||||||
Letzte Änderung: | 13 Mai 2024 10:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags