elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Feature analysis for detecting people from remotely sensed images

Sirmacek, Beril und Reinartz, Peter (2013) Feature analysis for detecting people from remotely sensed images. Journal of Applied Remote Sensing, 7 (1), Seiten 1-13. Society of Photo-optical Instrumentation Engineers (SPIE). doi: 10.1117/1.JRS.7.073594. ISSN 1931-3195.

[img] PDF
3MB

Offizielle URL: http://spie.org/x3636.xml

Kurzfassung

We propose a novel approach using airborne image sequences for detecting dense crowds and individuals. Although airborne images of this resolution range are not enough to see each person in detail, we can still notice a change of color and intensity components of the acquired image in the location where a person exists. Therefore, we propose a local feature detection-based probabilistic framework to detect people automatically. Extracted local features behave as observations of the probability density function (PDF) of the people locations to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding PDF. First, we use estimated PDF to detect boundaries of dense crowds. After that, using background information of dense crowds and previously extracted local features, we detect other people in noncrowd regions automatically for each image in the sequence. To test our crowd and people detection algorithm, we use airborne images taken over Munich during the Oktoberfest event, two different open-air concerts, and an outdoor festival. In addition, we apply tests on GeoEye-1 satellite images. Our experimental results indicate possible use of the algorithm in real-life mass events.

elib-URL des Eintrags:https://elib.dlr.de/81243/
Dokumentart:Zeitschriftenbeitrag
Titel:Feature analysis for detecting people from remotely sensed images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sirmacek, BerilBeril.Sirmacek (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:Januar 2013
Erschienen in:Journal of Applied Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:7
DOI:10.1117/1.JRS.7.073594
Seitenbereich:Seiten 1-13
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Gao, WeiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Society of Photo-optical Instrumentation Engineers (SPIE)
ISSN:1931-3195
Status:veröffentlicht
Stichwörter:airborne images; satellite images; feature extraction; probability theory; mean shift segmentation; object detection
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Projekt VABENE (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Reinartz, Prof. Dr.. Peter
Hinterlegt am:19 Feb 2013 08:54
Letzte Änderung:29 Nov 2023 13:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.