Pons, Jose und Viganno, Daniele und Geppert, Ulrich (2012) Pulsar Timing irregularities and the imprint of magnetic field evolution. Astronomy and Astrophysics, 547 (A9). EDP Sciences. doi: 10.1051/0004-6361/201220091.
PDF
- Nur DLR-intern zugänglich
129kB |
Kurzfassung
Context. The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties. Aims. We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index n. This is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements. Methods. We performed axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs to calculate the evolution of the braking index. Relatively rapid magnetic field modifications can be expected only in the crust of neutron stars, where we focus our study. Results. We find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n � 3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n < 3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n > 3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of a high absolute value and both positive and negative signs. Conclusions. Current magneto-thermal evolution models predict a large contribution to the timing noise and, in particular, to the braking index, from temporal variations of the magnetic field. Models with strong (�1014 G) multipolar or toroidal components, even with a weak (�1012 G) dipolar field are consistent with the observed trend of the timing properties.
elib-URL des Eintrags: | https://elib.dlr.de/79733/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Pulsar Timing irregularities and the imprint of magnetic field evolution | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | November 2012 | ||||||||||||||||
Erschienen in: | Astronomy and Astrophysics | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 547 | ||||||||||||||||
DOI: | 10.1051/0004-6361/201220091 | ||||||||||||||||
Verlag: | EDP Sciences | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | pulsars: general âÂ�Â� stars: neutron âÂ�Â� stars: magnetic field âÂ�Â� stars: evolution | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||
Standort: | Bremen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Raumfahrtsysteme > Systemkonditionierung | ||||||||||||||||
Hinterlegt von: | Geppert, Prof. Dr.rer.nat. habil. Ulrich | ||||||||||||||||
Hinterlegt am: | 30 Jan 2013 09:10 | ||||||||||||||||
Letzte Änderung: | 08 Mär 2018 18:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags