Stan, Sorel und Palubinskas, Gintautas und Datcu, Mihai (2002) Bayesian selection of the neighbourhood order for Gauss-Markov texture models. Pattern Recognition Letters, 23 (10), Seiten 1229-1238.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Gauss-Markov random fields have been successfully used as texture models in a host of applications, ranging from synthesis, feature extraction, classification and segmentation to query by image content and information retrieval in large image databases. An issue that deserves special consideration is the selection of the neighbourhood order (model complexity), which should faithfully reflect the Markovianity of spatial interactions. Estimating the parameters for the wrong model will not capture the essential statistical properties of the texture in question: a lower order model will not be informative enough, while a higher order will clutter the description with superfluous information, fitting the noise rather than the data. We give a full Bayesian solution for estimating the model complexity, using an appropriate set of prior probabilities on the parameters. The closed-form decision criterion is derived by employing a Gaussian approximation of the posterior probability around the mode. The validity and benefits of this approach are demonstrated on two important problems arising in machine vision: texture replication and image classification.
elib-URL des Eintrags: | https://elib.dlr.de/7951/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | LIDO-Berichtsjahr=2002, | ||||||||||||||||
Titel: | Bayesian selection of the neighbourhood order for Gauss-Markov texture models | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2002 | ||||||||||||||||
Erschienen in: | Pattern Recognition Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 23 | ||||||||||||||||
Seitenbereich: | Seiten 1229-1238 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Bayesian model selection, Gauss-Markov random fields, neighbourhood order, texture synthesis, classification | ||||||||||||||||
HGF - Forschungsbereich: | Verkehr und Weltraum (alt) | ||||||||||||||||
HGF - Programm: | Weltraum (alt) | ||||||||||||||||
HGF - Programmthema: | W EO - Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Weltraum | ||||||||||||||||
DLR - Forschungsgebiet: | W EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | NICHT SPEZIFIZIERT | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung | ||||||||||||||||
Hinterlegt von: | Roehl, Cornelia | ||||||||||||||||
Hinterlegt am: | 17 Feb 2006 | ||||||||||||||||
Letzte Änderung: | 06 Jan 2010 22:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags