Vaduva, Corina und Gavat, Inge und Datcu, Mihai (2012) Deep Learning in Very High Resolution Remote Sensing Image Information Mining Communication Concept. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO 2012), Seiten 2506-2510. IEEE Xplore. EUSIPCO 2012, 2012-08-27 - 2012-08-31, Bucharest, Romania. ISBN 978-1-4673-1068-0 (p). ISSN 2219-5491.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/6334194
Kurzfassung
This paper presents the image information mining based on a communication channel concept. The feature extraction algorithms encode the image, while an analysis of topic discovery will decode and send its content to the user in the shape of a semantic map. We consider this approach for a real meaning based semantic annotation of very high resolution remote sensing images. The scene content is described using a multi-level hierarchical information representation. Feature hierarchies are discovered considering that higher levels are formed by combining features from lower level. Such a level to level mapping defines our methodology as a deep learning process. The whole analysis can be divided in two major learning steps. The first one regards the Bayesian inference to extract objects and assign basic semantic to the image. The second step models the spatial interactions between the scene objects based on Latent Dirichlet Allocation, performing a high level semantic annotation. We used a WorldView2 image to exemplify the processing results.
elib-URL des Eintrags: | https://elib.dlr.de/79186/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Paper) | ||||||||||||||||
Titel: | Deep Learning in Very High Resolution Remote Sensing Image Information Mining Communication Concept | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 15 Mai 2012 | ||||||||||||||||
Erschienen in: | Proceedings of the 20th European Signal Processing Conference (EUSIPCO 2012) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 2506-2510 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
ISSN: | 2219-5491 | ||||||||||||||||
ISBN: | 978-1-4673-1068-0 (p) | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Information theory , deep learning , semantic annotation | ||||||||||||||||
Veranstaltungstitel: | EUSIPCO 2012 | ||||||||||||||||
Veranstaltungsort: | Bucharest, Romania | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 27 August 2012 | ||||||||||||||||
Veranstaltungsende: | 31 August 2012 | ||||||||||||||||
Veranstalter : | EURASIP | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 29 Nov 2012 14:06 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 19:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags