elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Comparison of Feature-Based MLR and PLS Regression Techniques for the Prediction of Three Soil Constituents in a Degraded South African Ecosystem

Bayer, Anita und Bachmann, Martin und Müller, Andreas und Kaufmann, Hermann (2012) A Comparison of Feature-Based MLR and PLS Regression Techniques for the Prediction of Three Soil Constituents in a Degraded South African Ecosystem. Applied and Environmental Soil Science, 2012, Seiten 1-20. Hindawi Publishing Corporation. doi: 10.1155/2012/971252. ISSN 1687-7667.

[img]
Vorschau
PDF
5MB

Offizielle URL: http://www.hindawi.com/journals/aess/2012/971252/

Kurzfassung

The accurate assessment of selected soil constituents can provide valuable indicators to identify and monitor land changes coupled with degradation which are frequent phenomena in semiarid regions. Two approaches for the quantification of soil organic carbon, iron oxides, and clay content based on field and laboratory spectroscopy of natural surfaces are tested. (1) A physical approach which is based on spectral absorption feature analysis is applied. For every soil constituent, a set of diagnostic spectral features is selected and linked with chemical reference data by multiple linear regression (MLR) techniques. (2) Partial least squares regression (PLS) as an exclusively statistical multivariate method is applied for comparison. Regression models are developed based on extensive ground reference data of 163 sampled sites collected in the Thicket Biome, South Africa, where land changes are observed due to intensive overgrazing. The approaches are assessed upon their prediction performance and significance in regard to a future quantification of soil constituents over large areas using imaging spectroscopy.

elib-URL des Eintrags:https://elib.dlr.de/78409/
Dokumentart:Zeitschriftenbeitrag
Titel:A Comparison of Feature-Based MLR and PLS Regression Techniques for the Prediction of Three Soil Constituents in a Degraded South African Ecosystem
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bayer, Anitaanita.bayer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bachmann, MartinMartin.Bachmann (at) dlr.dehttps://orcid.org/0000-0001-8381-7662NICHT SPEZIFIZIERT
Müller, Andreasandreas.mueller (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kaufmann, Hermanncharly (at) gfz-potsdam.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2012
Erschienen in:Applied and Environmental Soil Science
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:2012
DOI:10.1155/2012/971252
Seitenbereich:Seiten 1-20
Verlag:Hindawi Publishing Corporation
Name der Reihe:Quantitative Soil Spectroscopy
ISSN:1687-7667
Status:veröffentlicht
Stichwörter:Imaging Spectroscopy, Soil organic carbon, degradation, South Africa, Iron oxides, multiple linear regression analysis, partial least regression analysis
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Fernerkundung der Landoberfläche (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Bayer, Anita Daniela
Hinterlegt am:28 Nov 2012 10:45
Letzte Änderung:21 Nov 2023 13:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.