Bayer, Anita und Bachmann, Martin und Müller, Andreas und Kaufmann, Hermann (2012) A Comparison of Feature-Based MLR and PLS Regression Techniques for the Prediction of Three Soil Constituents in a Degraded South African Ecosystem. Applied and Environmental Soil Science, 2012, Seiten 1-20. Hindawi Publishing Corporation. doi: 10.1155/2012/971252. ISSN 1687-7667.
|
PDF
5MB |
Offizielle URL: http://www.hindawi.com/journals/aess/2012/971252/
Kurzfassung
The accurate assessment of selected soil constituents can provide valuable indicators to identify and monitor land changes coupled with degradation which are frequent phenomena in semiarid regions. Two approaches for the quantification of soil organic carbon, iron oxides, and clay content based on field and laboratory spectroscopy of natural surfaces are tested. (1) A physical approach which is based on spectral absorption feature analysis is applied. For every soil constituent, a set of diagnostic spectral features is selected and linked with chemical reference data by multiple linear regression (MLR) techniques. (2) Partial least squares regression (PLS) as an exclusively statistical multivariate method is applied for comparison. Regression models are developed based on extensive ground reference data of 163 sampled sites collected in the Thicket Biome, South Africa, where land changes are observed due to intensive overgrazing. The approaches are assessed upon their prediction performance and significance in regard to a future quantification of soil constituents over large areas using imaging spectroscopy.
elib-URL des Eintrags: | https://elib.dlr.de/78409/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | A Comparison of Feature-Based MLR and PLS Regression Techniques for the Prediction of Three Soil Constituents in a Degraded South African Ecosystem | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2012 | ||||||||||||||||||||
Erschienen in: | Applied and Environmental Soil Science | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 2012 | ||||||||||||||||||||
DOI: | 10.1155/2012/971252 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-20 | ||||||||||||||||||||
Verlag: | Hindawi Publishing Corporation | ||||||||||||||||||||
Name der Reihe: | Quantitative Soil Spectroscopy | ||||||||||||||||||||
ISSN: | 1687-7667 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Imaging Spectroscopy, Soil organic carbon, degradation, South Africa, Iron oxides, multiple linear regression analysis, partial least regression analysis | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Fernerkundung der Landoberfläche (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Landoberfläche | ||||||||||||||||||||
Hinterlegt von: | Bayer, Anita Daniela | ||||||||||||||||||||
Hinterlegt am: | 28 Nov 2012 10:45 | ||||||||||||||||||||
Letzte Änderung: | 21 Nov 2023 13:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags