elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Classification Algorithm for Hyperspectral Data based on Synergetics Theory

Cerra, Daniele und Müller, Rupert und Reinartz, Peter (2012) A Classification Algorithm for Hyperspectral Data based on Synergetics Theory. Third Annual Hyperspectral Imaging Conference, 2012-05-15 - 2012-05-16, Rome, Italy.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

This paper presents a classification methodology for hyperspectral data based on synergetics theory. Pattern recognition algorithms based on synergetics have been applied to images with limited success in the past, given their dependence on the rotation, shifting and scaling of the images. These drawbacks can be discarded if such methods are applied to data acquired by a hyperspectral sensor. We introduce a representation in which each single spectrum, related to an image element in a hyperspectral scene, can be projected in a space spanned by a set of user-defined prototype vectors, which belong to some classes of interest. Each test vector is attracted by a final state associated to a prototype, and can thus be classified: this establishes a first attempt at performing a pixel-wise image classification using notions derived from synergetics. As typical synergetics-based systems have the drawback of a rigid training step, we introduce a new procedure which allows the selection of a training area for each class of interest, used to weight the prototype vectors through attention parameters and to produce a more accurate classification map through plurality vote of independent classifications. As each classification is in principle obtained on the basis of a single training sample per class, the proposed technique could be particularly effective in tasks where only a small training dataset is available. The results presented are promising and often outperform state of the art classification methodologies, both general and specific to hyperspectral data.

elib-URL des Eintrags:https://elib.dlr.de/78233/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A Classification Algorithm for Hyperspectral Data based on Synergetics Theory
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cerra, DanieleMF-PBNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Müller, RupertMF-PBNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, PeterMF-PBNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2012
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:2
Seitenbereich:Seiten 18-23
Status:veröffentlicht
Stichwörter:Hyperspectral image analysis, image classification, least squares approximation (LS), synergetics theory.
Veranstaltungstitel:Third Annual Hyperspectral Imaging Conference
Veranstaltungsort:Rome, Italy
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 Mai 2012
Veranstaltungsende:16 Mai 2012
Veranstalter :Istituto Nazionale di Geofisica e Vulcanologia
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Spektrometrische Verfahren und Konzepte der Fernerkundung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Cerra, Daniele
Hinterlegt am:05 Nov 2012 14:32
Letzte Änderung:24 Apr 2024 19:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.