elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Improving runoff prediction through the assimilation of the ASCAT soil moisture product

Brocca, Luca und Melone, F. und Moramarco, T. und Wagner, Wolfgang und Naeimi, Vahid und Bartalis, Zoltan und Hasenauer, Stefan (2010) Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrology and Earth System Sciences, 14 (10), Seiten 1881-1893. Copernicus Publications. doi: 10.5194/hess-14-1881-2010. ISSN 1027-5606.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.hydrol-earth-syst-sci.net/14/1881/2010/hess-14-1881-2010.html

Kurzfassung

The role and the importance of soil moisture for meteorological, agricultural and hydrological applications is widely known. Remote sensing offers the unique capability to monitor soil moisture over large areas (catchment scale) with, nowadays, a temporal resolution suitable for hydrological purposes. However, the accuracy of the remotely sensed soil moisture estimates has to be carefully checked. The validation of these estimates with in-situ measurements is not straightforward due the well-known problems related to the spatial mismatch and the measurement accuracy. The analysis of the effects deriving from assimilating remotely sensed soil moisture data into hydrological or meteorological models could represent a more valuable method to test their reliability. In particular, the assimilation of satellite-derived soil moisture estimates into rainfall-runoff models at different scales and over different regions represents an important scientific and operational issue. In this study, the soil wetness index (SWI) product derived from the Advanced SCATterometer (ASCAT) sensor onboard of the Metop satellite was tested. The SWI was firstly compared with the soil moisture temporal pattern derived from a continuous rainfall-runoff model (MISDc) to assess its relationship with modeled data. Then, by using a simple data assimilation technique, the linearly rescaled SWI that matches the range of variability of modelled data (denoted as SWI*) was assimilated into MISDc and the model performance on flood estimation was analyzed. Moreover, three synthetic experiments considering errors on rainfall, model parameters and initial soil wetness conditions were carried out. These experiments allowed to further investigate the SWI potential when uncertain conditions take place. The most significant flood events, which occurred in the period 2000–2009 on five subcatchments of the Upper Tiber River in central Italy, ranging in extension between 100 and 650 km2, were used as case studies. Results reveal that the SWI derived from the ASCAT sensor can be conveniently adopted to improve runoff prediction in the study area, mainly if the initial soil wetness conditions are unknown.

elib-URL des Eintrags:https://elib.dlr.de/78021/
Dokumentart:Zeitschriftenbeitrag
Titel:Improving runoff prediction through the assimilation of the ASCAT soil moisture product
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Brocca, Lucaluca.brocca (at) irpi.cnr.itNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Melone, F.Research Institute for Geo-Hydrological Protection, National Research Council, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Moramarco, T.Research Institute for Geo-Hydrological Protection, National Research Council, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wagner, Wolfgangww (at) ipf.tuwien.ac.atNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Naeimi, Vahidvahid.naeimi (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bartalis, ZoltanZoltan.Bartalis (at) esa.intNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hasenauer, Stefansh (at) ipf.tuwien.ac.atNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2010
Erschienen in:Hydrology and Earth System Sciences
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.5194/hess-14-1881-2010
Seitenbereich:Seiten 1881-1893
Verlag:Copernicus Publications
ISSN:1027-5606
Status:veröffentlicht
Stichwörter:Catchment scale; Central Italy; Data assimilation techniques; Flood estimation; Remotely sensed soil moisture; Runoff prediction; Scatterometers; Soil wetness
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Fernerkundung der Landoberfläche (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Naeimi, Dr.techn. Vahid
Hinterlegt am:06 Nov 2012 11:15
Letzte Änderung:17 Okt 2024 14:07

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.