Fichtelmann, Bernd und Borg, Erik (2012) A new Self-learning Algorithm for Dynamic Classification of Water Bodies. In: Computational Science an Its Applications - ICCSA 2012, Part III, LNCS 7335, Procee, Seiten 457-470. Springer Heidelberg Dordrecht London New York. ICCSA 2012, 2012-06-18 - 2012-06-21, Salvador de Bahia, Brasilien. doi: 10.1007/978-3-642-31137-6_35. ISBN 978-3-642-31136-9. ISSN 0302-9743.
|
PDF
842kB |
Offizielle URL: http://rd.springer.com/book/10.1007/978-3-642-31137-6/page/1
Kurzfassung
In many applications of remote sensing data land-water masks play an important role. In this context they can be a helpful orientation to distinguish dark areas (e.g. cloud shadows, topographic shadows, burned areas, coniferous forests) and water areas. However, water bodies cannot always be classified exactly on basis of available remote sensing data. This fact can be caused by a variety of different physical and biological factors (e.g. chlorophyll, suspended particles, surface roughness, turbid and shallow water and dynamic of water bodies) as well as atmospheric factors (e.g. haze and clouds). On the other hand the best available static water masks also show deficiencies. These are essentially caused by the fact that land-water masks represent only a temporal snapshot of the water bodies distributed worldwide and therefore these masks cannot reflect their dynamic behavior. This paper presents a dynamic self-learning water masking approach for AATSR remote sensing data in the context of integrating high-quality water masks in processing chains for deriving value-added remote sensing data products. As an advantage to conventional water masking algorithms, the proposed approach operates on basis of a static water mask as data base for deriving an optimized dynamic water mask. Significant research effort was spent to develop and validate a dynamic self-learning algorithm and a processing scheme for operational derivation of actual land-water masks as basis for operational interpretation of remote sensing data. Based on this concept actual activities and perspectives for contributions to operational monitoring systems will be presented.
elib-URL des Eintrags: | https://elib.dlr.de/76300/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Paper) | ||||||||||||||||||||||||||||||||
Titel: | A new Self-learning Algorithm for Dynamic Classification of Water Bodies | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 2012 | ||||||||||||||||||||||||||||||||
Erschienen in: | Computational Science an Its Applications - ICCSA 2012, Part III, LNCS 7335 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Band: | Procee | ||||||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-642-31137-6_35 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 457-470 | ||||||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||||||
Verlag: | Springer Heidelberg Dordrecht London New York | ||||||||||||||||||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||||||||||||||||||
ISBN: | 978-3-642-31136-9 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | self-learning algorithm, land-water mask, interpretation, remote sensing | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | ICCSA 2012 | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Salvador de Bahia, Brasilien | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 18 Juni 2012 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 21 Juni 2012 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Fichtelmann, Dr.rer.nat. Bernd | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 30 Jul 2012 09:22 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 21 Okt 2024 10:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags