elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations

Otto, Sebastian und Trautmann, Thomas und Wendisch, Manfred (2011) On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations. Atmospheric Chemistry and Physics, 11, Seiten 4469-4490. Copernicus Publications. doi: 10.5194/acp-11-4469-2011.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.atmos-chem-phys.net/11/4469/2011/

Kurzfassung

Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006), dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10 %. At the bottom of the atmosphere (BOA) the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA) depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal) forcing by 55/5 % at the TOA over ocean/land and 15 % at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20 %. Large dust particles significantly contribute to all the radiative effects reported. They strongly enhance the absorbing properties and forward scattering in the solar and increase predominantly, e.g., the total TOA forcing of the dust over land.

elib-URL des Eintrags:https://elib.dlr.de/74662/
Dokumentart:Zeitschriftenbeitrag
Titel:On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Otto, SebastianInstitute for Meteorology, University of LeipzigNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Trautmann, Thomasthomas.trautmann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wendisch, ManfredInstitute for Meteorology, University of LeipzigNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:12 Mai 2011
Erschienen in:Atmospheric Chemistry and Physics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.5194/acp-11-4469-2011
Seitenbereich:Seiten 4469-4490
Verlag:Copernicus Publications
Status:veröffentlicht
Stichwörter:Saharan mineral dust, non-sphericity radiative effects, spheroidal particles, particle size equivalences, optical properties of mineral dust aerosols, radiative transfer, solar radiation, thermal radiation
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Entwicklung von Atmosphärenprozessoren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Atmosphärenprozessoren
Hinterlegt von: Trautmann, Prof.Dr. Thomas
Hinterlegt am:27 Jan 2012 16:02
Letzte Änderung:02 Mai 2019 14:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.