Sirmacek, Beril und Unsalan, Cem (2012) Road network detection using probabilistic and graph theoretical methods. IEEE Transactions on Geoscience and Remote Sensing, 50 (11), Seiten 4441-4453. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/tgrs.2012.2190078.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Road network detection from very high resolution satellite and aerial images has diverse and important usage areas such as map generation and updating. Although an expert can label road pixels in a given image, this operation is prone to errors and quite time consuming. Therefore, an automated system is needed to detect the road network in a given satellite or aerial image in a robust manner. In this study, we propose such a novel system. Our system has three main modules as: probabilistic road center detection, road shape extraction, and graph theory based road network formation. These modules may be used sequentially or interchangeably depending on the application at hand. To show the strengths and weaknesses of our system, we tested it on several very high resolution satellite (Geoeye, Ikonos, Quickbird) and aerial image sets. We compared our system with the ones existing in the literature. We also tested the sensitivity of our system to different parameter values. Obtained results indicate that our system can be used in detecting the road network on such images in a reliable and fast manner.
elib-URL des Eintrags: | https://elib.dlr.de/74517/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Road network detection using probabilistic and graph theoretical methods | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2012 | ||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 50 (11) | ||||||||||||
DOI: | 10.1109/tgrs.2012.2190078 | ||||||||||||
Seitenbereich: | Seiten 4441-4453 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Aerial images, satellite images, edge detection, kernel based density estimation, binary balloon algorithm, graph representation, road network detection. | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Projekt VABENE (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | Sirmacek, Beril | ||||||||||||
Hinterlegt am: | 25 Jan 2012 06:36 | ||||||||||||
Letzte Änderung: | 14 Jun 2023 16:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags