elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Discrete Graphical Models for Alphabet-Based Multisensory Data Fusion and Classification

Makarau, Aliaksei und Palubinskas, Gintautas und Reinartz, Peter (2011) Discrete Graphical Models for Alphabet-Based Multisensory Data Fusion and Classification. IEEE. International Symposium on Image and Data Fusion (ISIDF), 2011-08-09 - 2011-08-11, Tengchong, China. ISBN 9781457709692.

[img] PDF
661kB

Kurzfassung

The way of multisensory data integration is a crucial step of any data fusion method. Different physical types of sensors (optic, thermal, acoustic, radar, etc.), different resolution, and different types of GIS digital data (elevation, vector maps, etc.) require a proper method for data integration. Incommensurability of the data may not allow to use conventional statistical methods for fusion and processing of the data. Correct and established way of multisensory data integration is required to deal with such incommensurable data, while employment of an inappropriate methodology may lead to errors in the fusion. To perform a proper multisensory data fusion several methods were developed (weighted Bayesian, linear (log linear) opinion pool, neural networks, fuzzy logic approaches, etc.). Employment of these approaches is motivated by weighted consensus theory, leading the fusion of incommensurable data to be performed in a correct way. In this paper data fusion is proposed to perform using a finite predefined domain – alphabet. Feature extraction (data fission) is performed separately on different sources of data. Extracted features are processed to be represented on the predefined domain (alphabet). Alternative method such as factor graph (discrete graphical model) is employed for data and feature aggregation. The nature of factor graphs in application on data coded on a finite domain allows us to obtain an improvement in accuracy of real data fusion and classification for multispectral high resolution WorldView-2, TerraSAR-X SpotLight, and elevation model.

elib-URL des Eintrags:https://elib.dlr.de/72750/
Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:Discrete Graphical Models for Alphabet-Based Multisensory Data Fusion and Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Makarau, Aliakseialiaksei.makarau (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Palubinskas, Gintautasgintautas.palubinskas (at) dlr.dehttps://orcid.org/0000-0001-7322-7917NICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:August 2011
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 1-4
Verlag:IEEE
ISBN:9781457709692
Status:veröffentlicht
Stichwörter:Multisensor data, fusion, classification, graphical models, factor graphs, WorldView-2, TerraSAR-X
Veranstaltungstitel:International Symposium on Image and Data Fusion (ISIDF)
Veranstaltungsort:Tengchong, China
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 August 2011
Veranstaltungsende:11 August 2011
Veranstalter :Chinese Academy of Surveying and Mapping (CASM), ISPRS WG VII/6 - Remote Sensing Data Fusion
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben hochauflösende Fernerkundungsverfahreen (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Makarau, Aliaksei
Hinterlegt am:13 Dez 2011 08:28
Letzte Änderung:24 Apr 2024 19:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.