elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Mining Satellite Image Time Series: Statistical Modeling and Evolution Analysis

Cui, Shiyong und Datcu, Mihai (2011) Mining Satellite Image Time Series: Statistical Modeling and Evolution Analysis. 2011 International Symposium on Image and Data Fusion (ISIDF), 2011-08-09 - 2011-08-11, Tengchong, China. ISBN 978-1-4577-0967-8 .

[img] PDF
991kB

Offizielle URL: http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=6024237&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DMining+Satellite+Image+Time+Series%3A+Statistical+Modeling+and+Evolution+Analysi

Kurzfassung

Due to the short revisit time of high resolution satellites, huge amount of high resolution satellite images can be acquired every few days even few hours. It promotes the construction of Satellite Image Time Series (SITS), which contain valuable spatio-temporal information. Therefore, it is strongly needed to develop methods to explore such huge data to provide useful information in the context of earth observation. To address this issue, a patch based method for mining satellite image time series is proposed, consisting of statistical modeling and evolution analysis. Many statistical models has been proposed for Synthetic Aperture Radar (SAR) image modeling. Among them, G distribution has been proved efficient in modeling extremely heterogenous area especially for urban areas. In this paper, it is used to estimate the marginal distribution of SAR images by second-kind statistics. For the purpose of joint distribution modeling given the marginal distributions, optimal copula function is selected from a set of copulas by a Bayesian method and estimated using Kendall's τ. Based on the statistical model and the optimal copula, mixed information is computed between two neighboring patches along time for evolution analysis of the SITS. A v-support vector machine is applied for evolution classification. Performance of both estimation and classification are evaluated using our database produced by iterative classification.

elib-URL des Eintrags:https://elib.dlr.de/72657/
Dokumentart:Konferenzbeitrag (NICHT SPEZIFIZIERT)
Titel:Mining Satellite Image Time Series: Statistical Modeling and Evolution Analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cui, ShiyongDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:August 2011
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 1-4
ISBN:978-1-4577-0967-8
Status:veröffentlicht
Stichwörter:Image processing, change detection, SITS mining, classification, estimation
Veranstaltungstitel:2011 International Symposium on Image and Data Fusion (ISIDF)
Veranstaltungsort:Tengchong, China
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 August 2011
Veranstaltungsende:11 August 2011
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Cui, Shiyong
Hinterlegt am:09 Dez 2011 11:15
Letzte Änderung:06 Sep 2024 07:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.