elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Automatic crowd density and motion analysis in airborne image sequences based on a probabilistic framework

Sirmacek, Beril und Reinartz, Peter (2011) Automatic crowd density and motion analysis in airborne image sequences based on a probabilistic framework. IEEE. 2nd IEEE Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams (ARTEMIS'11), 2011-11-12, Barcelona, Spain. doi: 10.1109/iccvw.2011.6130347.

[img] PDF
1MB

Offizielle URL: http://www.iccv2011.org/

Kurzfassung

Real-time monitoring of crowded regions has crucial importance to avoid overload of people in certain areas. Understanding behavioral dynamics of large people groups can also help to estimate future status of underground passages, public areas, or streets. In order to bring an automated solution to the problem, we propose a novel approach using airborne image sequences. Our approach depends on extraction of local features from invariant color components of the images. Using extracted local features as observations, we form probability density functions (pdf) for each image of input sequence which holds information about density of people. We introduce four measures to extract information about pdf characteristics. A change within the four measures over the image sequence gives important information about status of the crowds. Besides, we also use obtained pdfs to estimate main crowd motion directions. To test our algorithm, we use a stadium entrance image data set, and two festival area data sets taken from an airborne camera system. In order to be later able to reach real-time performance the algorithms use parameters which can be extracted directly from the image data. Experimental results indicate possible usage of the developed algorithms in real-life events.

elib-URL des Eintrags:https://elib.dlr.de/71973/
Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:Automatic crowd density and motion analysis in airborne image sequences based on a probabilistic framework
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sirmacek, BerilBeril.Sirmacek (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, PeterNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2011
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/iccvw.2011.6130347
Seitenanzahl:8
Verlag:IEEE
Status:veröffentlicht
Stichwörter:Crowd detection, Crowd motion estimation, Human behavior understanding, Local feature extraction, Feature selection, Background estimation, Probabilty theory, Adaptive kernel density estimation, Satellite images, WorldView-2 satellite images, airborne images
Veranstaltungstitel:2nd IEEE Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams (ARTEMIS'11)
Veranstaltungsort:Barcelona, Spain
Veranstaltungsart:Workshop
Veranstaltungsdatum:12 November 2011
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - VABENE (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Sirmacek, Beril
Hinterlegt am:28 Nov 2011 07:24
Letzte Änderung:11 Nov 2024 09:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.