Sirmacek, Beril und Unsalan, Cem (2011) A Probabilistic Approach to Detect Urban Regions from Remotely Sensed Images Based on Combination of Local Features. 5th International Conference on Recent Advances in Space Technologies (RAST'2011), 2011-06-09 - 2011-06-11, Istanbul, Turkey.
|
PDF
148kB |
Offizielle URL: http://www.rast.org.tr
Kurzfassung
Detecting urban regions from very high resolution aerial and satellite images provides very useful results for urban planning, and land use analysis. Since manual detection is very time consuming and prone to errors, automated systems to detection of urban regions from very high resolution aerial and satellite images are needed. Unfortunately, diverse characteristics of urban regions, and uncontrolled appearance of remote sensing images (illumination, viewing angle, etc.) increase difficulty to develop automated systems. In order to overcome these difficulties, herein we propose a novel urban region detection method using local features and a probabilistic framework. First, we introduce four different local feature extraction methods. Extracted local feature vectors serve as observations of the probability density function to be estimated. Using a variable kernel density estimation method, we estimate the corresponding probability function. Using modes of the estimated density, as well as other probabilistic properties, we detect urban region boundaries in the image.We also introduce data and decision fusion methods to fuse information coming from different feature extraction methods. Extensive tests on very high resolution grayscale aerial and panchromatic Ikonos satellite images indicate practical usefulness of proposed method to detect urban regions automatically in a robust and fast manner.
elib-URL des Eintrags: | https://elib.dlr.de/70575/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | A Probabilistic Approach to Detect Urban Regions from Remotely Sensed Images Based on Combination of Local Features | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juni 2011 | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Seitenanzahl: | 5 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Panchromatic Ikonos satellite images, grayscale aerial images, SIFT, Harris, Gradient Magnitude Support Regions (GMSR), Probability Theory, Urban region detection, Feature Fusion | ||||||||||||
Veranstaltungstitel: | 5th International Conference on Recent Advances in Space Technologies (RAST'2011) | ||||||||||||
Veranstaltungsort: | Istanbul, Turkey | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 9 Juni 2011 | ||||||||||||
Veranstaltungsende: | 11 Juni 2011 | ||||||||||||
Veranstalter : | Air Force Academy, Turkey | ||||||||||||
HGF - Forschungsbereich: | Verkehr und Weltraum (alt) | ||||||||||||
HGF - Programm: | Weltraum (alt) | ||||||||||||
HGF - Programmthema: | W EO - Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Weltraum | ||||||||||||
DLR - Forschungsgebiet: | W EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | W - Vorhaben Photogrammetrie und Bildanalyse (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | Sirmacek, Beril | ||||||||||||
Hinterlegt am: | 01 Aug 2011 15:06 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 19:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags