elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Finding Mount Everest and Handling Voids

Storch, Tobias (2011) Finding Mount Everest and Handling Voids. Evolutionary Computation, 19 (2), Seiten 325-344. MIT Press. doi: 10.1162/EVCO_a_00032.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Evolutionary algorithms (EAs) are randomized search heuristics that solve problems successfully in many cases. Their behavior is often described in terms of strategies to find a high location on Earth’s surface. Unfortunately, many digital elevation models describing it contain void elements. These are elements not assigned an elevation. Therefore, we design and analyze simple EAs with different strategies to handle such partially defined functions. They are experimentally investigated on a dataset describing the elevation of Earth’s surface. The largest value found by an EA within a certain runtime is measured, and the median over a few runs is computed and compared for the different EAs. For the dataset, the distribution of void elements seems to be neither random nor adversarial. They are so-called semirandomly distributed. To deepen our understanding on the behavior of the different EAs, they are theoretically considered on well-known pseudo-Boolean functions transferred to partially defined ones. These modifications are also performed in a semirandom way. The typical runtime until an optimum is found by an EA is analyzed, namely bounded from above and below, and compared for the different EAs. We figure out that for the random model it is a good strategy to assume that a void element has a worse function value than all previous elements. Whereas for the adversary model it is a good strategy to assume that a void element has the best function value of all previous elements.

elib-URL des Eintrags:https://elib.dlr.de/69726/
Dokumentart:Zeitschriftenbeitrag
Titel:Finding Mount Everest and Handling Voids
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Storch, Tobiastobias.storch (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Mai 2011
Erschienen in:Evolutionary Computation
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:19
DOI:10.1162/EVCO_a_00032
Seitenbereich:Seiten 325-344
Verlag:MIT Press
Status:veröffentlicht
Stichwörter:Evolutionary algorithm, partially defined function, runtime analysis
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W - keine Zuordnung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):W - keine Zuordnung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Storch, Dr.rer.nat. Tobias
Hinterlegt am:06 Mai 2011 07:41
Letzte Änderung:06 Sep 2019 15:20

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.