elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Crustal recycling, mantle dehydration, and the thermal evolution of Mars

Morschhauser, A und Grott, M. und Breuer, D. (2011) Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus: International Journal of Solar System Studies, 212 (2), Seiten 541-558. Elsevier. doi: 10.1016/j.icarus.2010.12.028.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

We have reinvestigated the coupled thermal and crustal evolution of Mars taking new laboratory data concerning the flow behavior of iron-rich olivine into account. The low mantle viscosities associated with the relatively higher iron content of the martian mantle as well as the observed high concentrations of heat producing elements in a crust with a reduced thermal conductivity were found to promote phases of crustal recycling in many models. As crustal recycling is incompatible with an early separation of geochemical reservoirs, models were required to show no episodes of crustal recycling. Furthermore, admissible models were required to reproduce the martian crust formation history, to allow for the formation of partial melt under present day mantle conditions and to reproduce the measured concentrations of potassium and thorium on the martian surface. Taking dehydration stiffening of the mantle viscosity by the extraction of water from the mantle into account, we found that admissible models have low initial upper mantle temperatures around 1650 K, preferably a primordial crustal thickness of 30 km, and an initially wet mantle rheology. The crust formation process on Mars would then be driven by the extraction of a primordial crust after core formation, cooling the mantle to temperatures close to the peridotite solidus. According to this scenario, the second stage of global crust formation took place over a more extended period of time, waning at around 3500 Myr b.p., and was driven by heat produced by the decay of radioactive elements. Present-day volcanism would then be driven by mantle plumes originating at the core–mantle boundary under regions of locally thickened, thermally insulating crust. Water extraction from the mantle was found to be relatively efficient and close to 40% of the total inventory was lost from the mantle in most models. Assuming an initial mantle water content of 100 ppm and that 10% of the extracted water is supplied to the surface, this amount is equivalent to a 14 m thick global surface layer, suggesting that volcanic outgassing of H2O could have significantly influenced the early martian climate and increased the planet’s habitability. Research highlights: 1) We model the thermal and crustal evolution of Mars. 2) Crustal recycling is common due to low mantle viscosities and an insulating crust. 3) Observations suggest a primordial crust and low initial mantle temperatures. 4) Dehydration stiffening of the mantle favors recent volcanism. 5) Water extraction from the mantle is efficient and can exceed 40%.

elib-URL des Eintrags:https://elib.dlr.de/68320/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:Bisher nur online-Veröffentlichung.
Titel:Crustal recycling, mantle dehydration, and the thermal evolution of Mars
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Morschhauser, Aachim.morschhauser (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Grott, M.matthias.grott (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Breuer, D.doris.breuer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2011
Erschienen in:Icarus: International Journal of Solar System Studies
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:212
DOI:10.1016/j.icarus.2010.12.028
Seitenbereich:Seiten 541-558
Verlag:Elsevier
Status:veröffentlicht
Stichwörter:Mars; Mars, interior; Thermal histories; Volcanism; Geophysics
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EW - Erforschung des Weltraums
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Vergleichende Planetologie (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Institut für Planetenforschung
Hinterlegt von: Noack, Lena
Hinterlegt am:12 Jan 2011 11:45
Letzte Änderung:10 Jan 2019 15:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.