elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Post-treatment of Plasma-Sprayed Zirconia Based Electrolytes

Christenn, Claudia und Ansar, Asif (2010) Post-treatment of Plasma-Sprayed Zirconia Based Electrolytes. Fuel Cell Forum 2010 - 9th European Solid Oxide Fuel Cell Forum, 2010-06-29 - 2010-07-02, Lucerne, Swiss.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Yttria-stabilized zirconia (YSZ) is conventionally used as electrolyte material in solid oxide fuel cells (SOFCs). The ionic conductivity of YSZ shows a strong dependency on thickness of the electrolyte layer and on operating temperature of the cell. Due to temperature dependency of the ionic conductivity of YSZ, SOFCs with YSZ electrolyte operate in a temperature range of 800 to 1000 °C to reduce ohmic losses. An important research and development goal for SOFCs is to reduce the operating temperature below 800 °C. Though, the reduced operating temperature promotes durability of cells and decreases stringent demands on peripheral components, the ionic conductivity of electrolytes decreases following Arrhenius law. Reducing the thickness of conventionally used YSZ electrolyte by using nanostructured particles as feedstock or by using an electrolyte with improved ionic conductivity for intermediate temperature (IT)-SOFCs, e.g. scandia-stabilized zirconia (ScSZ), can solve this problem. ScSZ, owing to its high ionic conductivity, is of great interest as a potential low temperature electrolyte. Within this work layers of YSZ and of nanostructured YSZ were deposited on metal substrates using plasma spraying. As all thermal sprayed coatings contain some porosity, which influences the cell performance, the sprayed electrolyte layers were sintered in a second step. Conventional sintering of electrolytes is performed over several hours at temperatures above 1400°C. Nanostructured material assisted in enhancing the kinetics for sintering and grain growth. Plasma-sprayed coatings were under compressive stresses. In order to achieve a better understanding of differences in the sintering behaviour, plasma sprayed conventional YSZ and nanostructured YSZ layers were sintered under constrained and non-constrained conditions in the temperature range of 800 to 1520 °C and characterised. Sintering properties, microstructure, and conductivity of sprayed and sintered YSZ electrolyte layers were investigated by SEM, 4-point dc method, and mercury intrusion porosimetry.

elib-URL des Eintrags:https://elib.dlr.de/66482/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Post-treatment of Plasma-Sprayed Zirconia Based Electrolytes
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Christenn, ClaudiaDLR-TTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ansar, AsifDLR-TTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:29 Juni 2010
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:SOFC, Electrolyte, Plasma spraying, Sintering, Characterization
Veranstaltungstitel:Fuel Cell Forum 2010 - 9th European Solid Oxide Fuel Cell Forum
Veranstaltungsort:Lucerne, Swiss
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:29 Juni 2010
Veranstaltungsende:2 Juli 2010
Veranstalter :Euroean Fuel Cell Forum
HGF - Forschungsbereich:Energie
HGF - Programm:Rationelle Energieumwandlung (alt)
HGF - Programmthema:E BZ - Brennstoffzellen (alt)
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E BZ - Brennstoffzellen
DLR - Teilgebiet (Projekt, Vorhaben):E - Hochtemperatur-Brennstoffzellen (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Elektrochemische Energietechnik
Hinterlegt von: Christenn, Claudia
Hinterlegt am:23 Nov 2010 12:32
Letzte Änderung:24 Apr 2024 19:31

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.