elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

MULTIDISCIPLINARY 3D-OPTIMIZATION OF A FAN STAGE PERFORMANCE MAP WITH CONSIDERATION OF THE STATIC AND DYNAMIC ROTOR MECHANICS

Siller, Ulrich und Aulich, Marcel (2010) MULTIDISCIPLINARY 3D-OPTIMIZATION OF A FAN STAGE PERFORMANCE MAP WITH CONSIDERATION OF THE STATIC AND DYNAMIC ROTOR MECHANICS. ASME Turbo Expo 2010: Power for Land, Sea and Air, 2010-06-14 - 2010-06-18, Glasgow, UK. doi: 10.1115/gt2010-22792.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Achievement of an optimal compressor design with respect to its aerodynamic performance and feasible structural mechanics within an automated optimization process is subject of this paper. The compressor considered is a highly loaded, transonic fan stage, designed for achievement of a very high pressure ratio. To ensure operation in highly integrated installation conditions, a sufficient stability margin is of major concern. Multiple aerodynamic operating points at two rotational speeds allowed optimization of both the stability margin and the working line stage efficiency. On the part of structural mechanics, several static stress criteria were addressed for definite blade regions as well as the dynamic blade behavior in terms of the Campbell diagram. An optimization strategy was chosen, which targeted firstly on the fulfillment of multiple mechanical and aerodynamical constraints, while the aerodynamic performance was under constraint itself. Upon achievement, optimization aimed for maximum aerodynamic performance while keeping mechanics feasible. Response surfaces have been incorporated in the optimization process to reconcile costly high fidelity CFD and structural simulations with the large number of 114 free design parameters. Furthermore, optimization on these models enabled a successfully accomplishment of the constraint issue by a large number of numerically cheaper fitness evaluations. Starting from an already optimized baseline configuration, the current work targeted an improvement of the rotor aerodynamics in the transonic hub region and the resolution of previously unsolved problems concerning the rotor structural mechanics. Free design parameters were hub and casing contours in the rotor part, the shape of the leading and trailing blade edges and a high degree of freedom for rotor profile sections in the lower half of the blade.

elib-URL des Eintrags:https://elib.dlr.de/65000/
Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:MULTIDISCIPLINARY 3D-OPTIMIZATION OF A FAN STAGE PERFORMANCE MAP WITH CONSIDERATION OF THE STATIC AND DYNAMIC ROTOR MECHANICS
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Siller, Ulrichulrich.siller (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Aulich, Marcelmarcel.aulich (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2010
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1115/gt2010-22792
Status:veröffentlicht
Stichwörter:transonic transsonisch compressor verdichter fan optimization optimisation optimierung kennfeld campbell-diagram rotor mechanics
Veranstaltungstitel:ASME Turbo Expo 2010: Power for Land, Sea and Air
Veranstaltungsort:Glasgow, UK
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 Juni 2010
Veranstaltungsende:18 Juni 2010
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebe (alt)
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Antriebsforschung
DLR - Teilgebiet (Projekt, Vorhaben):L - Verdichtertechnologien (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Fan- und Verdichter
Hinterlegt von: Siller, Georg Ulrich
Hinterlegt am:23 Aug 2010 09:40
Letzte Änderung:11 Nov 2024 10:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.