elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SACCON Stability and Control Analysis Applying System Identification Techniques

Rohlf, Detlef und Schmidt, Stefan und Irving, Jonathan (2010) SACCON Stability and Control Analysis Applying System Identification Techniques. AIAA 40th Fluid Dynamics Conference , 2010-06-27 - 2010-07-01, Chicago, USA.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Different methods are described to determine dynamic derivatives of an UCAV configuration named SACCON (Stability And Control CONfiguration). These methods can be applied to both experimental and computationally obtained data sets. The method applied by DSTO assumes a linear derivative model and is based on a least-square curve-fitting technique and a subsequent avaluation step to actually compute the derivatives themselves. Based on the unsteady simulation obtained by computational fluid dynamics, the DSTO routine is able to recover the major thrends of vehicle performance with reasonable agreement for pitching stiffness and damping. Lift-related quantities do show a discrepancy, particularly at high angle-of-attack. The BAE Systems approach also assumes a linear derivative model. In this case however, the static pitching stiffness terms are defined explicitly from the static test results and then subtracted from the dynamic results to give the residual effect of the damping terms. A least squares fit of these is used to determine the damping derivatives. Using this approach, it is demonstrated that the linear derivative assumption falls down at higher angle-of-attack (AoA) and a more generalized modeling paradigm is required, e.g., as developed by DLR. The DLR approach enables the use of nonlinear model equations and is therefore applicable to the entire tested angle of attack and angle of sideslip regime generating a single set of nonlinear derivatives. Thus, the hysteresis loops of the coefficients derived from dynamic wind tunnel tests can be reproduced satisfactorily with most of their inherent significant changes depending on angle of attack and forced oscillation frequency.

elib-URL des Eintrags:https://elib.dlr.de/64419/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:SACCON Stability and Control Analysis Applying System Identification Techniques
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rohlf, DetlefDLR, Institute of Flight Systems, Braunschweig, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schmidt, StefanDSTO, AVD, Flight Systems, AUSTRALIANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Irving, JonathanBAE-Systems, Military Air Solutions, Flight Dynamics R&T, UKNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:12 Mai 2010
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Results achieved within the RTO AVT-161 Task Group, improve the ability to accurately predict both static and dynamic stability of general air and sea vehicles using computational fluid dynamics (CFD).
Veranstaltungstitel:AIAA 40th Fluid Dynamics Conference
Veranstaltungsort:Chicago, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:27 Juni 2010
Veranstaltungsende:1 Juli 2010
Veranstalter :AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Starrflügler (alt)
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Starrflüglerforschung
DLR - Teilgebiet (Projekt, Vorhaben):L - Systeme & Kabine (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik > Flugdynamik und Simulation
Hinterlegt von:UNGÜLTIGER BENUTZER
Hinterlegt am:21 Jun 2010 14:17
Letzte Änderung:24 Apr 2024 19:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.