elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery in Urban Areas

Suri, Sahil und Reinartz, Peter (2010) Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery in Urban Areas. IEEE Transactions on Geoscience and Remote Sensing, 48 (2), Seiten 939-949. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2009.2034842. ISSN 0196-2892.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://ieeexplore.ieee.org/Xplore/

Kurzfassung

The launch of high-resolution remote sensing satellites like TerraSAR-X, WorldView, and Ikonos has benefited the combined application of synthetic aperture radar (SAR) and optical imageries tremendously. Specifically, in case of natural calamities or disasters, decision makers can now easily use an old archived optical with a newly acquired (postdisaster) SAR image. Although the latest satellites provide the end user already georeferenced and orthorectified data products, still, registration differences exist between different data sets. These differences need to be taken care of through quick automated registration techniques before using the images in different applications. Specifically, mutual information (MI) has been utilized for the intricate SAR–optical registration problem. The computation of this metric involves estimating the joint histogram directly from image intensity values, which might have been generated from different sensor geometries and/or modalities (e.g., SAR and optical). Satellites carrying high-resolution remote sensing sensors like TerraSAR-X and Ikonos generate enormous data volume along with fine Earth observation details that might lead to failure of MI to detect correct registration parameters. In this paper, a solely histogram-based method to achieve automatic registration within TerraSAR-X and Ikonos images acquired specifically over urban areas is analyzed. Taking future sensors into a perspective, techniques like compression and segmentation for handling the enormous data volume and incompatible radiometry generated due to different SAR–optical image acquisition characteristics have been rightfully analyzed. The findings indicate that the proposed method is successful in estimating large global shifts followed by a fine refinement of registration parameters for high-resolution images acquired over dense urban areas.

elib-URL des Eintrags:https://elib.dlr.de/63032/
Dokumentart:Zeitschriftenbeitrag
Titel:Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery in Urban Areas
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Suri, SahilSahil.Suri (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, PeterPeter.reinartz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Februar 2010
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:48
DOI:10.1109/TGRS.2009.2034842
Seitenbereich:Seiten 939-949
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:High resolution, image matching, remote sensing, radar/optic coregistration, TerraSAR-X, Ikonos
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Photogrammetrie und Bildanalyse (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Reinartz, Prof. Dr.. Peter
Hinterlegt am:01 Feb 2010 07:45
Letzte Änderung:08 Mär 2018 18:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.