Ebendt, Rüdiger und Drechsler, Rolf (2009) Weighted A* Search - Unifying View and Application. Artificial Intelligence, 173 (14), Seiten 1310-1342. Elsevier. doi: 10.1016/j.artint.2009.06.004. ISSN 0004-3702.
PDF
- Nur DLR-intern zugänglich
748kB |
Offizielle URL: http://dx.doi.org/10.1016/j.artint.2009.06.004
Kurzfassung
The A* algorithm is a well-known heuristic best-first search method. Several performance-accelerated extensions of the exact A* approach are known. Interesting examples are approximate algorithms where the heuristic function used is inflated by a weight (often referred to as weighted A*). These methods guarantee a bounded suboptimality. As a technical contribution, this paper presents the previous results related to weighted A* from authors like Pohl, Pearl, Kim, Likhachev and others in a more condensed and unifying form. By use of this unified view, a novel general bound on suboptimality of the result is derived: in the case of avoiding any reopening of expanded states, for �µ>0, this bound is (1+�µ)^â��N/2â�� where N is (an upper bound on) the maximum depth of the search. Binary Decision Diagrams (BDDs) are well-known to AI, e.g. from set-based exploration of sparse-memory and symbolic manipulation of state spaces. The problem of exact or approximate BDD minimization is introduced as a possible new challenge for heuristic search. Like many classical AI domains, this problem is motivated by real-world applications. Several variants of weighted A* search are applied to problems of BDD minimization and the more classical domains like blockworlds and sliding-tile puzzles. For BDD minimization, the comparison of the evaluated methods also includes previous heuristic and simulation-based methods such as Rudell's hill-climbing based sifting algorithm, Simulated Annealing and Evolutionary Algorithms. A discussion of the results obtained in the different problem domains gives our experiences with weighted A*, which is of value for the AI practitioner.
elib-URL des Eintrags: | https://elib.dlr.de/59485/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Zusätzliche Informationen: | Eine Kopie der Arbeit im PDF-Format kann per Email an Ruediger.Ebendt@dlr.de angefordert werden. A copy of the paper (PDF) can be requested by email to Ruediger.Ebendt@dlr.de. | ||||||||||||
Titel: | Weighted A* Search - Unifying View and Application | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | August 2009 | ||||||||||||
Erschienen in: | Artificial Intelligence | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 173 | ||||||||||||
DOI: | 10.1016/j.artint.2009.06.004 | ||||||||||||
Seitenbereich: | Seiten 1310-1342 | ||||||||||||
Verlag: | Elsevier | ||||||||||||
ISSN: | 0004-3702 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Shortest-Path, Dijkstra, A*, heuristic search | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Mittel- und langfristige Entwicklung der Personenverkehrsnachfrage (alt) | ||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Verkehrsmanagement | ||||||||||||
Hinterlegt von: | Ebendt, Dr.rer.nat. Rüdiger | ||||||||||||
Hinterlegt am: | 17 Aug 2009 14:31 | ||||||||||||
Letzte Änderung: | 06 Sep 2019 15:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags