elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Traffic congestion parameter estimation in time series of airborne optical remote sensing images

Palubinskas, Gintautas und Kurz, Franz und Reinartz, Peter (2009) Traffic congestion parameter estimation in time series of airborne optical remote sensing images. IPI Hannover. ISPRS Hannover Workshop 2009 - High Resolution Earth Imaging for Geospatial Information, 2009-06-02 - 2009-06-05, Hannover, Germany. ISSN 1682-1777.

[img]
Vorschau
PDF
863kB

Kurzfassung

In this paper we propose a new model based traffic parameter estimation approach in congested situations in time series of airborne optical remote sensing data. The proposed approach is based on the combination of various techniques: change detection, image processing and incorporation of a priori information such as road network, information about vehicles and roads and finally a traffic model. The change detection in two images with a short time lag of several seconds is implemented using the multivariate alteration detection method resulting in a change image where the moving vehicles on the roads are highlighted. Further, image processing techniques are applied to derive the vehicle density in the binarized change image. Finally, this estimated vehicle density is related to the vehicle density, acquired by modelling the traffic flow for a road segment. The model is derived from a priori information about the vehicle sizes and road parameters, the road network and the spacing between the vehicles. Then, the modelled vehicle density is directly related to the average vehicle velocity on the road segment and thus the information about the traffic situation can be derived. To confirm our idea and to validate the method several flight campaigns with the DLR airborne experimental wide angle optical 3K digital camera system operated on a Do-228 aircraft were performed. Experiments are performed to analyse the performance of the proposed traffic parameter estimation method for highways and main streets in the cities. The estimated velocity profiles coincide qualitatively and quantitatively quite well with the reference measurements.

elib-URL des Eintrags:https://elib.dlr.de/59315/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Traffic congestion parameter estimation in time series of airborne optical remote sensing images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Palubinskas, GintautasGintautas.Palubinskas (at) dlr.dehttps://orcid.org/0000-0001-7322-7917NICHT SPEZIFIZIERT
Kurz, FranzFranz.Kurz (at) dlr.dehttps://orcid.org/0000-0003-1718-0004NICHT SPEZIFIZIERT
Reinartz, PeterPeter.Reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:Juni 2009
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:XXXVII
Seitenbereich:Seiten 1-6
Verlag:IPI Hannover
ISSN:1682-1777
Status:veröffentlicht
Stichwörter:Traffic congestion, traffic model, change detection, image time series, optical remote sensing
Veranstaltungstitel:ISPRS Hannover Workshop 2009 - High Resolution Earth Imaging for Geospatial Information
Veranstaltungsort:Hannover, Germany
Veranstaltungsart:Workshop
Veranstaltungsbeginn:2 Juni 2009
Veranstaltungsende:5 Juni 2009
Veranstalter :IPI Hannover
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - ARGOS (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Palubinskas, Dr.math. Gintautas
Hinterlegt am:07 Jul 2009 10:28
Letzte Änderung:24 Apr 2024 19:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.