elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Structural relaxation in a binary metallic melt: Molecular dynamics computer simulation of undercooled Al<sub>80</sub>Ni<sub>20</sub>

Das, Subir K. und Horbach, Jürgen und Voigtmann, Thomas (2008) Structural relaxation in a binary metallic melt: Molecular dynamics computer simulation of undercooled Al<sub>80</sub>Ni<sub>20</sub>. Physical Review B, 78, 064208/1-064208/13. doi: 10.1103/PhysRevB.78.064208.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000078000006064208000001&idtype=cvips&gifs=yes

Kurzfassung

Molecular dynamics computer simulations are performed to study structure and structural relaxation in the glassforming metallic alloy Al<sub>80</sub>Ni<sub>20</sub>. The interactions between the particles are modeled by an effective potential of the embedded atom type. Our model of Al<sub>80</sub>Ni<sub>20</sub> exhibits chemical short-range order (CSRO) that is reflected in a broad prepeak around a wave number of 1.8 Å<sup>−1</sup> in the partial static structure factor for the Ni-Ni correlations. The CSRO is due to the preference of Ni atoms to have Al rather than Ni atoms as nearest neighbors. By analyzing incoherent and coherent intermediate scattering functions as well as self-diffusion constants and shear viscosity, we discuss how the chemical ordering is reflected in the dynamics of the deeply undercooled melt. The q dependence of the alpha relaxation time as well as the Debye-Waller factor for the Al-Al correlations show oscillations at the location of the prepeak in the partial static structure factor for the Ni-Ni correlations. The latter feature of the Debye-Waller factor is well reproduced by a calculation in the framework of the mode coupling theory (MCT) of the glass transition, using the partial static structure factors from the simulation as input. We also check the validity of the Stokes-Einstein-Sutherland formula that relates the self-diffusion coefficients with the shear viscosity. We show that it breaks down already far above the mode coupling critical temperature Tc. The failure of the Stokes-Einstein-Sutherland relation is not related to the specific chemical ordering in Al<sub>80</sub>Ni<sub>20</sub>.

elib-URL des Eintrags:https://elib.dlr.de/55620/
Dokumentart:Zeitschriftenbeitrag
Titel:Structural relaxation in a binary metallic melt: Molecular dynamics computer simulation of undercooled Al<sub>80</sub>Ni<sub>20</sub>
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Das, Subir K.Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, IndiaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Horbach, JürgenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Voigtmann, ThomasNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:27 August 2008
Erschienen in:Physical Review B
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Ja
Band:78
DOI:10.1103/PhysRevB.78.064208
Seitenbereich:064208/1-064208/13
Status:veröffentlicht
Stichwörter:structural relaxation, metallic undercooled melt, molecular dynamics simulation, mode coupling theory
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W FR - Forschung unter Weltraumbedingungen (alt)
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Materialwissenschaftliche Forschung (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Materialphysik im Weltraum
Hinterlegt von: Horbach, Dr.rer.nat. Jürgen
Hinterlegt am:20 Okt 2008
Letzte Änderung:27 Apr 2009 15:17

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.