elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Prediction-based strategies for robust near real-time GPS signal anomaly detection on a global scale

Allende Alba, Gerardo und Hauschild, André und Thölert, Steffen und Gizem Esenbuğa, Özge (2026) Prediction-based strategies for robust near real-time GPS signal anomaly detection on a global scale. Advances in Space Research. Elsevier. ISSN 0273-1177.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0273117726000621

Kurzfassung

During an anomalous signal deformation event, off-nominal distortions of signals with respect to each other are produced. This leads to abnormal receiver-dependent pseudorange biases that pose a threat for high integrity applications. The best characterization of signal deformations is obtained using high-gain antennas. However, due to their limited tracking capabilities and costly operation, they are less suitable for continuous multi-satellite monitoring. Although using the Wide Area Augmentation System (WAAS) monitor network makes it more likely to detect signal anomalies when they occur, this approach is limited to monitor only roughly half of the GPS constellation in a permanent way. This contribution presents a methodology for continuous and global GPS L1 and L2 signal quality monitoring, aimed at the early detection of anomalous signal distortions. It is based on the estimation of very high-rate (5 min samples) intra-frequency satellite differential code biases (DCB) using observations from the International GNSS Service (IGS) network. Time series of estimates are used as monitoring metrics. Detection of non-nominal estimates is done based on an unsupervised learning mixture model using results from classical, Bayesian and neural network-based autoregressive models. To quantify the confidence of detection, epoch-wise probabilities are computed using a Markov chain model. Two anomalous signal deformation events, occurred to GPS IIF SVN66 and SVN73 satellites in 2021 and 2022, respectively, were analyzed. To evaluate the effect of such events on individual signal components and observables, precise point positioning (PPP) residuals of selected IGS stations were computed. The obtained results show that the proposed methodology is suitable for the detection on a global scale in near real-time (few minutes to few hours) of such type of events. Through an early detection mechanism, the presented strategies aim at contributing to the prompt characterization of anomalous signal deformation events.

elib-URL des Eintrags:https://elib.dlr.de/222925/
Dokumentart:Zeitschriftenbeitrag
Titel:Prediction-based strategies for robust near real-time GPS signal anomaly detection on a global scale
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Allende Alba, GerardoGerardo.AllendeAlba (at) dlr.dehttps://orcid.org/0000-0003-1257-9454NICHT SPEZIFIZIERT
Hauschild, Andréandre.hauschild (at) dlr.dehttps://orcid.org/0000-0002-0172-3492NICHT SPEZIFIZIERT
Thölert, SteffenSteffen.Thoelert (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gizem Esenbuğa, Özgeoezge.esenbuga (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Januar 2026
Erschienen in:Advances in Space Research
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Verlag:Elsevier
ISSN:0273-1177
Status:veröffentlicht
Stichwörter:GNSS signal monitoringGPS anomalous signal deformationDifferential code biasesNear real-time anomaly detectionAutoregressive modelsUnsupervised machine learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - GNSS Technologien und Dienste
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Navigation
Raumflugbetrieb und Astronautentraining > Raumflugtechnologie
Hinterlegt von: Allende Alba, Dr. Gerardo
Hinterlegt am:19 Feb 2026 10:10
Letzte Änderung:19 Feb 2026 10:10

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.